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Abstract

We study the relation between macroeconomic fundamentals and aggregate stock market

returns through the lens of a state of the art dynamic stochastic general equilibrium (DSGE)

model considered in Christiano, Trabandt and Walentin (2011). We provide a full-information

Bayesian estimation of the model using macro variables and extract three fundamental shocks

to the economy through the model: neutral technology shock, investment-specific technolog-

ical shock, and monetary policy shock. While it has been shown that the DSGE model

matches a wide range of macroeconomic variables well, we are the first to show that the

three shocks have significant and robust predictive power of aggregate stock market returns.

Compared to other predictors of stock returns, such as cay of Lettau and Ludvigson (2001)

and output gap of Cooper and Priestley (2009), the three shocks are obtained from a struc-

tural model, closer to economic fundamentals and represent more exogenous shocks to the

economy. Our results show that DSGE models, which have been successful in modeling

macroeconomic dynamics, have great potential in capturing asset price dynamics as well.

1



1 Introduction

One of the key issues in asset pricing is to understand the economic fundamentals that drive

the fluctuations of asset prices. Modern finance theories on asset pricing, however, have mainly

focused on the relative pricing of different financial securities. For example, the well-known Black-

Scholes-Merton option pricing model considers the relative pricing of option and stock while taking

the underlying stock price as given. The celebrated Capital Asset Pricing Model (CAPM) relates

individual stock returns to market returns without specifying the economic forces that drive market

returns. Modern dynamic term structure models also mainly focus on the relative pricing of bonds

across the yield curve. These models tend to assume that the yield curve is driven by some latent

state variables without explicitly modeling the economic nature of these variables.

Increasing attention has been paid in the literature to relate asset prices to economic funda-

mentals as evidenced by the rapid growth of the macro finance literature. For example, the macro

term structure literature has been trying to relate term structure dynamics to macro fundamen-

tals. By incorporating the Taylor rule into traditional term structure models, several studies have

shown that inflation and output gap can explain a significant portion of the fluctuations of bond

yields. The investment based literature has also tried to relate equity returns to firm fundamen-

tals, thus giving economic meaning to empirical based factors (such as HML and SMB) for equity

returns. Current attempts to connect macro variables with asset prices, however, are typically

based on partial equilibrium analysis. Without a well specified general equilibrium model, it is not

clear that the exogenously specified pricing kernels in these “reduced-form” models are consistent

with general equilibrium. It is also difficult to identify any causal relations among government

policies, macro variables, and asset prices. Given that financial assets are claims on real assets,

explicit general equilibrium modeling of the whole economy might help to better understand the

economic forces that drive asset prices.

The New Keynesian Dynamic Stochastic General Equilibrium (DSGE) models offer such a
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framework to understand the link between asset prices and economic fundamentals. DSGE models

have become a dominant modeling framework in macroeconomics and have been widely used by

both academics and central bankers around the world for policy analysis, (see, e.g., Clarida, Gaĺı

and Gertler (2000) and Gali and Gertler (2007)). Under the sticky price equilibrium of these

models, monetary policy is not neutral and has important impacts on the real activities of the

economy and direct implications for the prices of financial assets. However, most existing studies

on DSGE models in the macroeconomic literature, such as Christiano, Eichenbaum and Evans

(2005), Clarida, Gaĺı and Gertler (2000) , and Smets and Wouters (2007), have mainly focused on

the real sector and ignored the financial sector. The recent global financial crisis has highlighted

the importance of the financial sector for the stability of the global economy. A good DSGE

model should be able to capture the financial sector and consequently asset prices well. Therefore,

financial prices provide an alternative perspective to examine potential shortcomings of DSGE

models: If they make counter factual predictions on financial prices, then one should be careful

in using them for policy analysis. Since financial prices are forward looking and contain market

expectations for future economic activities, we can also better identify model parameters and

policy shocks by incorporating financial prices in the estimation of DSGE models.

In this paper, we study the link between macroeconomic fundamentals and aggregate stock

returns through the lens of New Keynesian DSGE models. In particular, we study whether fun-

damental economic shocks considered in these models have any explanatory power of aggregate

stock market returns. Given that stocks represent claims on real productive assets, important

drivers of economic growth and business cycle should also affect the fluctuations of stock returns.

For example, total factor productivity represents the overall efficiency of capital and labor in pro-

ducing goods and services, while investment-specific technological shock represents the efficiency

of machines and equipments. Non-neutral monetary policy also has significant impact on real

economic activities. Therefore, at least theoretically there should be close connections between

these macroeconomic factors and stock returns.
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Our analysis is based on a state of the art DSGE model considered in Christiano, Trabandt and

Walentin (2011) (CTW), which includes all the major ingredients of DSGE models. CTW have

shown that this model matches a wide range of macroeconomic variables very well. In this paper,

we provide one of the first studies that examines the ability of this DSGE model in explaining

aggregate stock market returns. Our paper makes several important contributions to the macro

literature on DSGE models as well as the finance literature on asset pricing.

First, we develop full-information Bayesian Markov Chain Monte Carlo (MCMC) methods for

estimating DSGE models using macroeconomic variables. Whereas the Bayesian moment matching

methods of CTW essentially match the unconditional moments of the macro variables, our full-

information Bayesian MCMC methods fully exploit the conditional information contained in the

likelihood function of the macro data. As a result, our methods provide more efficient estimation

of model parameters. More important, our MCMC methods make it possible to back out the latent

shocks to the economy in DSGE models. In contrast, the Bayesian moment matching methods

cannot back out the latent shocks because they can only match the long-run average features of

the data.

Second, we estimate the DSGE model of CTW using our full-information Bayesian MCMC

methods based on macroeconomic variables only. We obtain reasonable estimates of model pa-

rameters and confirm the findings of CTW that the DSGE model can match a wide range of macro

variables well. In addition, we back out the three fundamental shocks to the economy in the DSGE

model, namely the neutral technology (NT ) shock, the investment-specific technological (INV )

shock, and the monetary policy (MP ) shock.

Finally, we examine the predictive power of the three extracted shocks of aggregate stock

market returns. We regress the CRSP value-weighted index return on NT , INV , and MP shocks.

The whole sample period is from the first quarter of 1966 to the third quarter of 2010. We use the

three shocks to forecast future one-month, one-quarter, and one-year return of the CRSP index.

In general, we find all three shocks have strong predictive power of future stock returns, although
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the INV shock becomes more significant at longer forecasting horizon. Welch and Goyal (2007)

have shown that predictability of stock returns tend to be sensitive to sample period used. To test

the robustness of our results, we change the starting date of the sample period to the first quarter

of 1970 and 1975 and obtain very similar results. We also compare the predictive power of the

three shocks with that of other predictive variables that have been studied in the literature, such

as the cay factor of Lettau and Ludvigson (2001) and output gap (gap) of Cooper and Priestley

(2009). We find that our three shock variables have much stronger and more robust predictive

power than cay and gap.

Our result is a testament of the power of the DSGE approach. Given that we estimate the

DSGE model using only macro data, it is amazing that the three shocks extracted from the

model have such strong predictive power of stock returns. The three shocks have important

advantages over other predictive variables considered in the literature. First, they are derived

from a structural economic model and therefore have clear economic meaning. Second, they

represent more fundamental forces in the economy. In contrast, cay and gap are derived rather

than fundamental variables. Third, the three shocks represent more exogenous forces to the

economy. Finally, the most important advantage of our approach is that it shows that the DSGE

approach captures important elements of the economy such that the shocks extracted from the

model can predict asset returns even out of sample. Therefore, it highlights the possibility of

integrating macroeconomics and asset pricing under an unified modeling framework.

The rest of the paper is organized as follows. Section II introduces the DSGE model. Section

III discusses the full-information Bayesian estimation methods. Section IV discuss the data and

empirical results, and Section V concludes.
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2 The Model

The DSGE model that we estimate is taken from CTW. The modeled economy contains a perfectly

competitive final goods market, a monopolistic competitive intermediate goods market, households

who derive utility from final goods consumption and disutility from supplying labor to production.

There are Calvo (1983) type of nominal price rigidities and wage rigidities in the intermediate

goods market. Government consumes a fixed fraction of GDP very period and the monetary

authority set the nominal interest rate according to a Taylor rule. There are three exogenous

shocks in the economy: total factor productivity shocks, investment-specific technological shocks,

and monetary policy shocks. CTW show that the model matches vey well an important set of

macroeconomic variables including: changes in relative prices of investment, real per hour GDP

growth rate, unemployment rate, capacity utilization, average weekly hours, consumption-to-GDP

ratio, investment-to-GDP ratio, job vacancies, job separation rate, job finding rate, weekly hours

per labor force, Federal Funds Rates. Next, we present the model in details.

2.1 Production sector

There are two industries in the production sector, final goods industry and intermediate goods

industry. The production of the final consumption goods uses a continuum of intermediate goods,

indexed by i ∈ [0, 1] via the Dixit-Stiglitz aggregator

Yt =

[∫ 1

0

Y
1
λf

i,t di

]λf
, λ > 1 , (1)

where Yt is the output of final goods, Yi,t is the amount of intermediate goods i used in the

final good production, which in equilibrium equals the output of intermediate goods i, and λf

measures the substitutability among different intermediate goods. The larger λ is, the more

substitutable the intermediate goods are. Since the final goods industry is perfectly competitive,
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profit maximization leads to the demand function for intermediate goods i:

Yi,t = Yt

(
Pi,t
Pt

) λf
λf−1

, (2)

where Pt is the nominal price of the final consumption goods and Pit is the nominal price of

intermediate goods i. It can be shown that goods prices satisfy the following relation:

Pt =

(∫ 1

0

P
− 1
λf−1

i,t di

)−(λf−1)

. (3)

The production of intermediate goods i employs both capital and labor via the following

homogenous production technology

Yi,t = (ztHi,t)
1−αKα

i,t − z+
t ϕ , (4)

where zt is the neutral technology shock, Hi,t and Ki,t are the labor service and capital service,

respectively, employed by firm i, α is the capital share of output, and ϕ is the fixed production

cost. Finally, z+
t is defined as

z+
t = Ψ

α
1−α
t zt ,

where Ψt is the investment-specific technology shock, measured as the relative price of consumption

goods to investment goods. Assume that the neutral technology shock zt and Φt evolve as follows:

µz,t = µz + ρz µz,t−1 + ezt , where µz,t = ∆ log zt , E (ezt ) = σ2
z , (5)

µψ,t = µψ + ρψ µψ,t−1 + eψt , where µψ,t = ∆ logψt , E
(
eψt

)
= σ2

ψ . (6)

The intermediate goods industry is assumed to have no entry and exit, which is ensured by choosing
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a fixed cost ψ that brings zero profits to the intermediate goods producers.

Intermediate goods producer i rents capital service Kit from households and its net profit at

period t is given by

PitYit − rKt Kit −WtHit .

The producer takes the rent of capital service rKt and wage rate Wt as given but has market power

to set the price of its goods in a Calvo (1983) staggered price setting to maximize its profits. With

probability ξp, producer i cannot reoptimize its price and has to set its price according to the

following rule,

Pi,t = π Pi,t−1

and with probability 1− ξp, producer i sets price Pi,t to maximize its profits, i.e.,

max
{Pi,t}

Et
∞∑
τ=0

(
ξp β

)τ
νt+τ

[
Pi,tYi,t+τ | t −Wt+τHt+τ | t

]
(7)

subject to the demand function in equation (2). In the above objective function, Yi,t+τ | t and

Ht+τ | t refer to the output and labor hiring, respectively, by producer i at time t + τ if the last

time when price Pi is reoptimized is period t.

2.2 Households

Following CTW, we assume that there is a continuum of differentiated labor types indexed with j

and uniformly distributed between zero and one. A typical household has infinite many members

covering all the labor types. It is assume that a household’s consumption decision is made based on

utilitarian basis. That is, every household member consumes the same amount consumption goods

even though they might have different status of employment. CTW show that a representative
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household’s life-long utility can be written as

∞∑
t=0

βt

[
log (Ct − bCt−1)− AL

∫ 1

0

h1+φ
jt

1 + φ

]
, (8)

subject to the budget constraint

Pt

(
Ct +

It
Ψt

)
+Bt+1 + PtPk′,t∆t ≤

∞∑
t=0

∫ 1

0

Wjthjt dj +XK
t K̄t +Rt−1Bt (9)

for t = 0, 1, · · · ,∞. Here, hjt is the number of household members with labor type j who are

employed, Bt is the nominal bond holdings purchased by household at t − 1 , Pk′,t is the market

price of one unit capital stock, XK
t is the net cash payment to the household by renting out capital

K̄t, given by

XK
t = Pt

[
ut r

K
t −

a(ut)

Ψt

]
.

The wage rate of labor type j is determined by a monopoly union who represents all j-type workers

and households take the wage rate of each labor type as given.

Households own the economy’s physical capital K̄. The amount of capital service Kt available

for production is given by

Kt = ut K̄t ,

where ut is the utilization rate of physical capital and utilization incurs a maintenance cost

a(u) = b σa u
2/2 + b(1− σa)u+ b (σa /2− 1) . (10)

where b and σa are constants and chosen such that steady state utilization rate is one and at

steady state a(u = 1) = 0. Note that the maintenance cost a(u) is measured in terms of capital

goods, whose relative price to consumption goods is 1/Φt. A representative household accumulates
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capital stock according to the following rule:

K̄t+1 = (1− δ) K̄t + F (It, It−1) + ∆t ,

where ∆t is the capital stock purchased by the representative household and equals zero in equi-

librium because all households are identical. Here, F (It, It−1) is the investment adjustment cost,

defined as

F (It, It−1) =

(
1− S

(
It
It−1

))
and

S(xt) =
1

2

{
exp

[
σs
(
xt − exp(µ+

z + µψ)
)]

+ exp
[
−σs

(
xt − exp(µ+

z + µψ)
)]
− 2
}
,

where xt = It/It−1 and exp(µ+
z +µψ) is the steady state growth rate of investment. The parameter

σs is chosen such that at steady state S(exp(µ+
z + µψ)) = 0 and S ′(exp(µ+

z + µψ)) = 0. Note that

investment It is measured in terms of capital goods. The consumption goods market clearing is

then given by

Yt = Ct +Gt + Ĩt

where Gt is government spending and Ĩ is investment measured in consumption goods, which also

includes the capital maintenance cost a(ut), i.e.,

Ĩ =
It + u(at)

Φt

.
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2.3 Labor unions

There are labor contractors who hires all types of labor through labor unions and produce a

homogenous labor service Ht, according to the following production function

Ht =

[∫ 1

0

h
1
λw
jt dj

]λw
, λw > 1 , (11)

where λw measures the elasticity of substitution among different labor types. The intermediate

goods producers employ the homogenous labor service for production. Labor contractors are

perfectly competitive, whose profit maximization leads to the demand function for labor type i

hjt = Ht

(
Wjt

Wt

) −λw
λw−1

(12)

It is easy to show that wages satisfy the following relation:

Wt =

(∫ 1

0

W
− 1
λw−1

i,t dj

)−(λw−1)

, (13)

where Wj,t is the wage of labor type j and Wt is the wage of the homogenous labor service.

Assume that labor unions face the same Calvo (1983) type of wage rigidities. Each period,

with probability ξw, labor union j cannot reoptimize the wage rate of labor type j and has to set

the wage rate according to the following rule

Wjt+1 = πtµz+

and with probability 1− ξw, labor union j chooses Wjt to maximize households’ utility

Et
∞∑
τ=0

(βξw)τ
[
νt+τWjtht+τ | t − AL

h1+φ
jt+τ | t

1 + φ

]
(14)

10



subject to the demand curve for labor type j in equation (12). Here, νt+τ is the marginal utility

of one hjt+τ | t is the supply of type j labor at period t + τ if the last time that labor union j

reoptimizes wage rate Wjt is period t.

2.4 Fiscal and Monetary Authorities

Following CTW, fiscal authority in the model simply transfers a fixed fraction g of output as

government spending, i.e.,

Gt = g Yt .

Monetary authority sets the level of a short-term nominal interest rate according to the following

Taylor rule

log

(
Rt

R

)
= ρR log

(
Rt−1

R

)
+ (1− ρR)

[
ρπ log

(πt
π

)
+ ρy log

(
gdpt
gdp

)]
+ Vt. (15)

where Rt is the short-term interest rate, R is the steady state interest rate, and Vt is the monetary

policy shock, which follows the process

Vt = ρV Vt−1 + σV e
V
t , (16)

with eV ∼ IIDN (0, 1).

A detailed solution of the model is provided in the appendix of CTW and will not be repeated

here.

3 Full-Information BMCMC Estimation

In this section, we develop full-information BMCMC method for estimating the aforementioned

DSGE model based on observed macroeconomic variables. We choose seven macroeconomic vari-
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ables following Smets and Wouters (2007): per capita output growth (dy), per capita consumption

growth (dc), per capita investment growth (di), wage growth (dw), logarithm of inflation (π), 3-

month T-Bill (r), and average weekly hours per capita(h). The three fundamental exogenous

shocks are neutral technology shocks {µz,t}, investment-specific technology shocks {µψ,t} and

monetary policy shocks {Vt}, defined in equations (5), (6), and (16). Given the initial states, the

time-series of the aforementioned three exogenous shocks completely determine the outcome of

the economy.

3.1 Solution of the System

Our goal is to solve and estimate the economic system described in Section 2 using the actual

economic outcomes observed in history. The model is solved in Dynare 1 to the second order

approximation. Let Xt denote the state variables of the model and classify the variables in Xt

into three groups:

• Xo
t : observable endogenous state variables

• Xu
t : unobservable endogenous state variables

• Xe
t : exogenous state variables = {µz,t, µψ,t, Vt}

There are three exogenous shocks Ut = {ezt , e
ψ
t , e

V
t }. The variables evolves according the following

rules obtained from solving the model

Xo
t = Γo (Xt−1, U

e
t ,Θ) = Γo

(
Xo
t−1, X

u
t−1, X

e
t−1, U

e
t ,Θ

)
Xu
t = Γu

(
Xo
t−1, X

u
t−1, X

e
t−1, Ut,Θ

)
Xe
t = Γe

(
Xo
t−1, X

u
t−1, X

e
t−1, Ut,Θ

)

1Please find detailed information on Dynare at www.dynare.org.
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where Θ is the vector of model parameters

Θ = [β, φ, b, α, δ, ηg, ξp, ξw, K, λf , λw, σa, σs, πss, ρk, ρπ, ρy,mz, µψ, σz, σψ, σv, ρz, ρψ, ρv]

and Γe is determined by the following relation:

Ut =


ezt

eψt

eVt

 =


[
µz,t − µz(1− ρz)− ρzµz,t−1

]
/σz[

µψ,t − µψ(1− ρψ)− ρψµψ,t−1

]
/σψ

[Vt − ρvVt−1] /σv

 .

To calculate Xt, we input the observed values of Xo
t−1 (denoted as X̃o

t−1) and the model gener-

ated values of Xu
t , given the exogenous Xe

t , into the above Γ functions. Therefore, we can calculate

Xu
t from the initial values X0, the time series of {X̃o

s}ts=1, and the exogenous process {Us}ts=1 as

Xu
t = Γu,(t)

(
X0, {X̃o

s}ts=1, {Us}ts=1,Θ
)
,

using Γu function iteratively for t times. Consequently, the model generated values for observable

endogenous variables can be written as

Xo
t = Γo

(
X̃o
t−1,Γ

u,(t−1)
(
X0, {X̃o

s}t−1
s=1, {Us}t−1

s=1,Θ
)
, Xe

t−1, U
e
t ,Θ

)
.

Let Υt denote the model solution of the observable variables that we would like to match with

the actual observation, which may share some common variables with Xt. Our goal is to choose

model parameters Θ and latent variables {Ut}Tt=1 such that Υt is as close to Υobs
t as possible.

Assume that

Υt = Γ (Xt−1, Ut,Θ) ,
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where the endogenous variables Xt−1 is given by

Xt−1 =
{
X̃o
t−1,Γ

u,(t−1)
(
X0, {X̃o

s}t−1
s=1, {Us}t−1

s=1,Θ
)
, Xe

t−1

}
.

Based on second order approximation in Dynare, Υt depends on the state variables last period

(Xt−1) and the shocks this period (Ut) to the second order, i.e.,

Υt = Γ (Xt−1, Ut,Θ)

= Υsteady (Θ) + A+BXt−1 + C Ut +D (Xt−1 ⊗Xt−1) + E (Ut ⊗ Ut) + F (Xt−1 ⊗ Ut) .

where Υsteady (Θ) represents the steady value of Υt and ⊗ denotes the Kronecker product. We use

matrices

Ω(Θ) ≡
[
Υsteady A B C D E F

]
to summarize the coefficients in the solution for Υ. We denote the coefficient matrices for the

solutions of Xu
t as Ωu(Θ), which are given similarly by

Ωu(Θ) ≡
[
Xu

steady Au Bu Cu Du Eu Fu

]
.

All the coefficient matrices depend on model parameters Θ.

3.2 Full-information Bayesian estimation

Define the time series of observable variables as Υobs
t for t = 1, · · · , T, and assume Υobs

t are observed

with independent pricing errors

Υobs
t = Υt + εt = Γ(Xt−1, µt,Θ) + εt
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where εt = [ε1t, · · · , ε7t], εit ∼ N(0, σ2
i ) for i = 1, · · · , 7 and Υt is the model implied price from the

Γ function that is solved numerically using Dynare package. In the Dynare package, we assume

[Υt X
µ
t X

o
t ] = Γ(Xt−1, µt; Θ).

where the dynamics of µt is determined through the following evolution equations


µz,t = µz(1− ρz) + ρzµz,t−1 + σze

z
t

µψ,t−1 = µψ(1− ρψ) + ρψµψ,t−1 + σψe
ψ
t

Vt = ρV Vt−1 + σV e
V
t

,

and Θ. Since µt (t = 1, · · · , T ) can be uniquely specified by the sequence (µz,t, µψ,t, Vt), the

main objective of our analysis is to estimate the model parameters, σi (i = 1, · · · , 7) and Θ (i =

1, · · · , 7), and latent state variables St = [µz,t, µψ,t, Vt] (t = 1, · · · , T ) using observationΥobs
t (t =

1, · · · , T ). The biggest challenge of the analysis is that the marginal likelihood based on parameters

only has to be obtained by integrating out a very high dimensional function (on the order of 3×T

dimension due to latent state variables), creating extremely heavy computing burdens. However,

solving for parameters and latent variables seems most feasible using Bayesian MCMC methods.

In contrast to classical statistical theory, which uses the likelihood L(Θ) ≡ p(Υ|Θ), Bayesian

inference adds to the likelihood function the prior distribution for Θ, called π(Θ). The distribution

of (Υ,S) and π(Θ) combine to provide a joint distribution for (Υ,S,Θ) from which the posterior

distribution of (Θ,S) given Υ is produced

p(Θ,S|Υ) =
p(Υ,S,Θ)∫

p(Υ,S,Θ)dSdΘ
∝ p(Υ,S,Θ) .
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In our context, it is

p(Θ,S|Υ) ∝ p(Υ|S,Θ)× p(S|Θ)× π(Θ)

= p(Υobs
1 |S,Θ)× p(Υobs

2 |Υobs
1 ,S,Θ)× · · · × p(Υobs

T |[Υobs
1 , · · ·Υobs

T−1],S,Θ)

×p(S|Θ)× π(Θ)

∝
T∏
t=1

7∏
i=1

1

σi
exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

×
T∏
t=1

1

σz
exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

×
T∏
t=1

1

σψ
exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

×
T∏
t=1

1

σV
exp{− 1

2σ2
V

[Vt − ρV Vt−1]2} × π(Θ) .

In general, it is difficult to simulate directly from the above high dimensional posterior distribu-

tion. The theory underlying the MCMC algorithms that eases the computational burden is the

Clifford-Hammersley Theorem. This theorem states that the joint distribution p(Θ,S|Υ) can be

represented by the complete conditional distributions p(Θ|S,Υ) and p(S|Θ,Υ). MCMC algorithm

is done iteratively. In each iteration, each parameter is updated based on most recent value of all

other parameters and latent variables through sampling from the corresponding complete condi-

tional distribution, and the latent variables at each time t is also updated in the similar fashion.

As this is done, the chains converge (theoretically), to the target posterior distribution. Therefore,

after a sufficient number of samples, called a burn-in period, the algorithm is then sampling from

a converged target posterior distribution. To find parameter estimates, however, requires some

additional machinery. Use of calculus methods will only work nicely if the prior distributions are

conjugate priors, leading to tractable solutions. However, in our analysis here, parameters and

latent variables are involved into likelihood through the Dynare package, which is a ”black box”

for us, resulting in intractable posterior distributions. We therefore turn to Metropolis Hastings

16



Algorithm (MH) for updating both Θ and S. The MH algorithm is an adaptive rejection sam-

pling method where candidate draw is proposed and then accepted with probability proportional

to the ratio of the likelihood of the proposed draw to the current draw. This means that if the

new position has a higher likelihood (defined using the posterior distribution), then the parameter

values are updated with probability 1. Alternatively, if they are less likely, the parameter values

are updated with probability according to the likelihood ratio. Thus the parameter values will

tend to stay near the highest probability regions when being sampled and adequately cover the

probability space. The actual steps involved are as follows provide a vector of starting values for

the algorithm, Θ(0), for iteration g,

• Step 1. Specify a candidate distribution, h(Θ|Θ(g−1));

• Step 2. Generate a proposed for parameters, Θ∗ ∼ h(Θ|Θ(g−1));

• Step 3. Compute the acceptance ratio

Υg =
p(Θ∗)× h(Θ∗|Θ(g−1))

p(Θ(g−1))× h(Θ(g−1)|Θ∗)

where p(.) represents a complete conditional distribution;

• Step 4. Generate u ∼ Unif [0, 1], then set

Θ(g) =

 Θ∗ if Υg ≥ u

Θ(g−1) if Υg < u
;

• Step 5. Set g = g + 1 and return to Step 1.

If the candidate distribution is symmetric, the MH algorithm has acceptance ratio equivalent to

p(Θ∗)

p(Θ(g−1))
. In implementation, we chose h(Θ|Θ(g−1)) ∼ N(Θ(g−1), c2) with some constant variance c2.

The MH algorithm is conducted iteratively on each parameter in Θ and on each latent variable at
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each time point t = 1, · · · , T . In estimation, we draw posterior samples using the above described

MCMC, and use the means of the posterior draws as parameter estimates and the standard

deviations of the posterior draws as standard errors of the parameter estimates after a bum-in

period.

3.3 Positeriors

In this section, we provides a brief description about the priors, posterior distributions, and the

updating procedures for parameters and latent variables in our model.

• Posterior of σi(i = 1, · · · , 7) — Set the prior of σi as σ2
i ∼ IG(a, b), where a,b are hyper-

parameters. The posterior of σ2
i is

σ2
i ∼ IG(

T

2
+ a,A)

where

A =
T∑
t=1

1

2
(Υobs

t (i)−Υt(i))
2 + b .

• Posterior of Θi(i = 1, · · · , 25) — Set the prior of Θi as Θi
2 ∼ N(m,M2) where m, M are

hyper-parameters. The posterior of Θi is

p
(
Θi|Θ[−i],S,Υ

)
∝

T∏
t=1

7∏
i=1

1

σi
exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

×
T∏
t=1

1

σz
exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

×
T∏
t=1

1

σψ
exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

×
T∏
t=1

1

σV
exp{− 1

2σ2
V

[Vt − ρV Vt−1]2} × π(Θ)× exp{−(Θi −m)2

2M2
} ,
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where Θ[−i] contains the most recent values of other parameters in Θ. In implementation,

we simplify the above posterior through abandoning terms that do not depend on Θi, and

use MH algorithm to update Θi.

• Posterior of {µz,t, µψ,t, Vt} (t = 1, · · · , T ) — The posterior distribution of µz,t (for 1 ≤ t <

T ) is

p
(
µz,t|Θ, {µz,1, · · · , µz,t−1, µz,t+1, · · · , µz,T}, {µψ,t}Tt=1, {Vt}Tt=1,Υ

)
∝

T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
z

[µz,t − µz(1− ρz)− ρzµz,t−1]2}

× exp{− 1

2σ2
z

[µz,t+1 − µz(1− ρz)− ρzµz,t]2} .

For t = T , the posterior distribution only involves the first two terms in the above equation.

Again, MH algorithm is used to update µz,t. Updating of µψ,t and Vt (t = 1, · · · , T ) are done

in the same way. The analogous posterior distribution for µψ,t is,

p
(
µψ,t|Θ, {µψ,1, · · · , µψ,t−1, µψ,t+1, · · · , µψ,T}, {µz,t}Tt=1, {Vt}Tt=1,Υ

)
∝

T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
ψ

[µψ,t − µψ(1− ρψ)− ρψµψ,t−1]2}

× exp{− 1

2σ2
ψ

[µψ,t+1 − µψ(1− ρψ)− ρψµψ,t]2} .
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The analogous posterior distribution for Vt is,

p
(
Vt|Θ, {V1, · · · , Vt−1, Vt+1, · · · , VT}, {µz,t}Tt=1, {µψ,t}Tt=1,Υ

)
∝

T∏
s=t

N∏
i=1

exp{− 1

2σ2
i

[Υobs
t (i)−Υt(i)]

2}

× exp{− 1

2σ2
V

[Vt − ρV Vt−1]2}

× exp{− 1

2σ2
V

[Vt+1 − ρV Vt]2} .

Table 1 presents the estimated posterior means and standard errors of model parameters, close

to what CTW find in their estimation. Figure 1 plots the three exogenous shocks.

4 Empirical Results

In this section, we explore the predictive power of the three latent shocks {µzt , µ
ψ
t , Vt} on stock

returns at one-month, one-quarter, and one-year horizon and through comparison with the cay

factor in Lettau and Ludvigson (2001) and the gap factor in Cooper and Priestley (2009). Our

latent shocks are estimated using the seven macroeconomic variables for sample period 1966Q1

to 2010Q3 because of the poor quality of macro data before 1966Q1 (Smets and Wouters (2007)).

All macroeconomic data is from the DRI data set from WRDS. Market stock returns are proxied

by CRSP value-weighted return, taken from Ken French’s website.

The cay factor is from Ludvigson’s website and constructed based on

cayt = cn,t − ac − βc1 at − βc2 lt ,

where cn,t is log of nondurable consumption, at is log of asset holdings, lt is log of labor income.
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The coefficients in the above equation comes from the following regression

cn,t = ac + βc1 at + βc2 lt +
k∑

i=−k

βc1,i ∆at−i +
k∑

i=−k

βc2,i ∆lt−i .

Lettau and Ludvigson (2001) show that the cay factor is a good proxy for market expectations

for future returns under certain conditions.

The gap factor is constructed based on quarterly industry production index (IP), which is also

from the DRI data set, according to following regression model

IPt = a+ βg1 t+ βg2 t
2 + gapt

for the aforementioned sample period. 2 Cooper and Priestley (2009) do not provide a theory

behind the gap factor but show that gap has an excellent predictive power of future returns

empirically.

4.1 Summary statistics

Panel A of Table 2 presents the correlations between the macroeconomic variables used in our

estimation and the three estimated latent variables and the correlations between the latent vari-

ables and the cay factor and the gap factor. There are three main observations: (1) Both neutral

technology shocks NT and investment-specific technology shock INV are positively correlated

with output growth, consumption growth, and investment growth but negatively correlated with

inflation. This result is consistent with our intuition and what CTW find because higher pro-

ductivity leads to higher contemporaneous output, consumption, and investment. (2) NT is

positively correlated with wage while the correlation between NT is close to zero and negative.

Neutral technology shock improves the productivity of labor hence the wage rate. Investment-

2Please see Cooper and Priestley (2009) for details.
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specific technology shocks also improves the productivity of labor due to high capital level, but

can decrease the demand for labor and generates a downward pressure on wage rate. The final

effect depends on which of the aforementioned two effects dominates. (3) Both neutral technology

shock and investment-specific technology shock have a positive (although small) correlation with

interest rate. Higher productivity leads to higher output, which through Taylor rule results in a

higher interest rate.

The cay factor is positively correlated with the investment-specific technology shock and mon-

etary policy shock with correlation coefficients being 0.64 and 0.15, and slightly negatively cor-

related with the neutral technology shock with a correlation coefficient of −0.02. The gap factor

is positively correlated monetary policy shock and negatively correlated with the two technology

shocks, although the magnitudes of the correlation coefficients are small, being −0.05, −0.11, and

0.08, respectively. It is possible that the gap captures some other fundamental shocks not included

in our model.

4.2 Predictive regressions

We follow Lettau and Ludvigson (2001) and Cooper and Priestley (2009) and use the following

predictive regression

Rt+1̃ = α + β Xt + εt , (17)

where α is the regression intercept, β is the coefficient vector, and Xt is the vector of latent shocks

of quarter t, i..e,

Xt = [µzt , µ
ψ
t , Vt]

and cay or gap for comparison reason. Here, Rt+1̃ is the excess return of CRSP value-weighted

returns of the subsequent month, the subsequent quarter, or the subsequent year of quarter t for

predictive regression at one-month horizon, one-quarter horizon, or one-year horizon, respectively.

Therefore, 1̃ refers to one month, one quarter, or one year accordingly.
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Table 3 reports the regression coefficients using the latent variables as independent variables

at three horizons, one-month, one-quarter, and one-year horizon. Panel A presents the results for

the full sample period: 1966Q1 - 2010Q3. Panels B and C presents the results for two subsamples:

1970Q1-2010Q3 and 1975Q1 and 2010Q3. The choices of subsamples are chosen based on the

observation in Welch and Goyal (2009) that most of successful predictors for stock returns are

found to perform much worse in these two subsamples. The reported t-statistics are corrected

for heteroskedasticity and serial correlation, up to two lags, using the Newey and West (1987)

estimator.

The main observation from Table 3 is that our estimated latent shocks preforms well in all

three sample periods with the adjusted R-squares ranging from 0.02 to 0.03 for one-month horizon,

from 0.02 to 0.04 for one-quarter horizon, and from 0.7 to 0.13 for one-year horizon. The sample

period 1975Q1-2010Q3 perform the worst. Most of the predictive power comes from the neutral

technology shocks and the monetary policy shocks. The regression coefficients of NT and MP are

almost all significant at 5% level. The explanatory power of the investment-specific technology

shock is weak at one-month horizon, gets stronger at one-quarter horizon and becomes significant

at 5% level at one-year horizon. This observation is present in all there sample periods. Consistent

at all horizons and all sample periods, a positive neutral technology shock and a higher investment-

specific technology shock lead to higher future stock returns, while higher monetary policy shocks

leads to lower future stock returns. It is intuitive that higher technology level leads to higher

profitability hence higher returns. The negative relation between monetary policy shocks and stock

returns are consistent with the findings in Bernanke and Kuttner (2005) and may be explained by

the higher financing cost of firms after a positive monetary policy shock.

We also compare the predictability of our estimated latent shocks with two of the most success-

ful stock return predictors in the literature, the cay factor and the gap factor. Besides the success

of cay and gap in predicting returns, we choose those two factors because they are constructed

based on macroeconomic variables in stead of prices, such as dividend-to-price ratio. Table 4
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reports the regression coefficients, the corresponding Newey-West t-statistics, and the adjusted

R-squares of the estimated latent shocks, the cay factor, and the gap factor at one-month horizon.

For all three sample periods, both cay and gap have a (adjusted) R-square of zero and either the

coefficients of cay or those of gap are significant at 5% level. The latent shocks have a R-square

ranging from 0.02 to 0.03. Monetary policy shock has the best explanatory power among the three

latent variables, whose regression coefficient is significant at 5% level for all three periods. The

coefficient of NT is significant at 5% level for period 1975Q1-2010Q3 and only significant at 10%

level for periods 1966Q1 - 2010Q3 and 1070Q1 - 2010Q3. The coefficient of INV is not significant

for all three periods. The period of 1975Q1 - 2010Q3 is the most unpredictable period for all the

predictors at one-month horizon.

Table 5 compares the predictability of the latent shocks, the cay factor, and the gap factor at

one-quarter horizon. The latent shocks still have the best predictive power at one-quarter horizon.

The R-squares of cay and gap are lower than those of the latent shocks for all three sample periods.

The coefficients of cay and gap are significant at 5% level for all three periods. Moreover, higher cay

predicts higher future stock returns while higher gap predicts lower future returns. The coefficient

of INV remains insignificant. The coefficients of NT and MP are significant at 5% level for all

periods except that the coefficient of MP is not significant for period 1975Q1 - 2010Q3. For all

predictors, period 1975Q1 - 2010Q3 remains to be the most unpredictable period.

Table 6 compares the predictability of the latent shocks, the cay factor, and the gap factor at

one-year horizon. Similar to the observation at one-month and one-quarter horizons, our estimated

latent variables have a better predictability than cay and gap. The R-squares of latent shocks

range from 0.05 to 0.10. The coefficients of cay and gap range from all significant at 5% level.

The coefficients of NT , INV , and MP are significant at 5% level except the coefficient of NT for

period 1966Q1 - 2010Q3.

In summary, our estimated latent shocks has a predictive power that is to the least not worse
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than cay and gap. The relation between the three shocks and future returns are economically in-

tuitive. Higher neutral technology shocks and higher investment-specific technology shocks means

higher profits in the future hence higher return. Higher monetary policy shocks predict lower

future returns due to higher financing costs for firms. Consistent with the positive and high cor-

relation between cay and NT shown in Table 2, the cay factor has a similar relation with stock

returns as NT . However, the economic intuition behind gap is hard to interpret. gap has very

low correlation with any of the three latent shocks and higher gap predicts lower future returns.

5 Conclusion

A full-information Bayesian Markov Chain Monte Carlo (BMCMC) method is developed for esti-

mating DSGE models using macroeconomic variables. We implement this method on a standard

medium-size DSGE model based on CTW and extract three exogenous latent shocks: neutral

technology shock, investment-specific technology shock, and monetary policy shock. The esti-

mated latent shocks are shown to exhibit excellent predictive power for future aggregate stocks

returns at one-month, one-quarter, and one-year horizon for all three sample periods examined in

the study: 1966Q1-2010Q3, 1970Q1-2010Q3, and 1975Q1-2010Q3. Compared with cay and gap,

our estimated latent shocks have greater and more robust predictive power.
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Table 1: Estimated Parameters and Estimation Errors

Panel A of this table reports the parameters values estimated using the Bayesian Markov Chain Monte Carlo

method based on 50,000 Monte Carlo iterations. Observed macroeconomic variables used in the estimation are

output growth (dy), consumption growth(dc), investment growth (di), wage growth (dw), logarithm of inflation

(π), 3-month T-Bill (r), and employment (h). Sample period is 1966Q1 - 2010Q3. Panel B of this table reports

the estimation errors of the seven observed macroeconomic variables.

Parameter Posterior Mean Posterior Standard Error

Panel A: Estimated parameter values

β 0.9980 0.0005
φ 1.3838 0.0366
b 0.9598 0.0111
α 0.2308 0.0006
ξp 0.6022 0.0064
ξw 0.8232 0.0029
λf 1.1640 0.0024
λw 1.0373 0.0008
σa 0.2463 0.0242
σs 4.6910 0.2075
πss 1.0071 0.0023
ρR 0.7947 0.0036
ρπ 1.6597 0.0524
ρy 0.1505 0.0079
µz 0.0038 0.0001
µψ 0.0025 0.0003
ρz 0.1207 0.0664
ρψ 0.7455 0.0500
ρv 0.3101 0.0534
σz 0.0026 0.0004
σψ 0.0029 0.0003
σv 0.0021 0.0001

Panel B: Estimation errors

σdy 0.8277 0.0446
σdc 0.4954 0.0268
σdi 3.2050 0.1695
σdw 0.6202 0.0341
σπ 0.1702 0.0161
σr 0.0817 0.0115
σh 2.9769 0.1874
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Table 2: Correlation Matrix

Panel A of this table presents the correlations between macroeconomic variables, including per capita output growth

(dy), per capita consumption growth(dc), per capita investment growth (di), wage growth (dw), logarithm of

inflation (π), 3-month T-Bill (r), and average weekly hours per capita(h), and estimated latent variables, including

the neutral technology shock (NT ), investment-specific technology shock (INV ), monetary policy shock (MP ),

and the cay factor (Lettau and Ludvigson, 2001), and output gap (Cooper and Priestley, 2009). The cay factor is

taken from Sidney Ludvigson’s website. The output gap factor is the residual µt from the following regression over

the 1966Q01 and 2010Q03 sample: yt = a+ b · t+ c · t2 +µt, where yt is the log of industrial production at quarter

t. Panels B of this table reports the correlation matrix between latent variables. All data are sampled quarterly

from 1966Q1 to 2010Q3.

Panel A: Correlations between macroeconomic variables and latent variables

NT INV MP

dy 0.31 0.25 0.38
dc 0.21 0.21 0.31
di 0.25 0.18 0.30
dw 0.21 -0.03 0.03
pi -0.31 -0.32 -0.06
r 0.04 0.04 0.48
h 0.03 0.37 0.24
cay -0.02 0.64 0.15
gap -0.05 -0.11 0.08

Panel B: Correlations between latent variables

NT 1.00
INV 0.07 1.00
MP 0.37 0.39 1.00
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Table 3: Return Predictability of Estimated Latent Variables

This table reports the results from predictive regressions of stock market returns on lagged latent variables. Stock

market returns are proxed by the excess returns of the CRSP value-weighted index, taken from Ken French’s

website. Panels A, B and C present the results for three data periods, 1966Q1-2010Q3, 1970Q1-2010Q3, and

1975Q1-2010Q3, respectively. Within each panel, the results of an OLS regression where quarterly latent variables

predict stock returns of one month ahead, one quarter ahead, and one year ahead are reported, respectively. The

Newey-West corrected t-statistics are reported in parentheses and R̄2 is the adjusted R2.

constant NT INV MP R̄2

Panel A: 1966Q1 - 2010Q3

One-month horizon

-1.24 302.12 37.20 -547.52 0.03
( -1.46 ) ( 1.79 ) ( 0.60 ) ( -2.24 )

One-quarter horizon

-0.04 9.33 1.78 -8.67 0.04
( -2.14 ) ( 3.04 ) ( 1.48 ) ( -2.23 )

One-year horizon

-0.03 6.62 11.96 -24.58 0.11
( -0.61 ) ( 0.81 ) ( 3.18 ) ( -2.72 )

Panel B: 1970Q1 - 2010Q3

One-month horizon

-1.44 326.26 39.32 -558.14 0.03
( -1.57 ) ( 1.81 ) ( 0.62 ) ( -2.14 )

One-quarter horizon

-0.04 9.94 1.77 -8.69 0.04
( -2.07 ) ( 3.00 ) ( 1.43 ) ( -2.10 )

One-year horizon

-0.07 17.41 11.17 -28.94 0.13
( -1.65 ) ( 2.50 ) ( 2.88 ) ( -3.79 )

Panel C: 1975Q1 - 2010Q3

One-month horizon

-1.37 364.09 34.31 -454.57 0.02
( -1.43 ) ( 2.01 ) ( 0.50 ) ( -1.96 )

One-quarter horizon

-0.02 8.39 0.81 -6.36 0.02
( -1.31 ) ( 2.56 ) ( 0.65 ) ( -1.44 )

One-year horizon

-0.05 18.09 8.81 -21.25 0.07
( -1.18 ) ( 2.55 ) ( 2.09 ) ( -2.47 )
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Table 4: Return Predictability Comparison at One-Month Horizon

This table reports the results from predictive regressions of stock market returns at one-month horizon on lagged

latent variables, the cay factor (Lettau and Ludvigson, 2001), and output gap (Cooper and Priestley, 2009). The

cay factor is taken from Sidney Ludvigson’s website. The output gap is the residual µt from the following regression

over the 1966m01 and 2010m09 sample: yt = a + b · t + c · t2 + µt, where yt is the log of industrial production

at month t. Panels A, B and C present the results for three data periods, 1966Q1-2010Q3, 1970Q1-2005Q4, and

1975Q1-2005Q4, respectively. Within each panel, the results of an OLS regression where quarterly latent shocks,

the cay factor, and the gap, predict stock returns of one month ahead, respectively. The Newey-West corrected

t-statistics are reported in parentheses and R̄2 is the adjusted R2.

constant NT INV MP cay gap R̄2

Panel A: 1966Q1 - 2010Q3

-1.24 302.12 37.20 -547.52 0.03
( -1.46 ) ( 1.79 ) ( 0.60 ) ( -2.24 )

0.48 0.28 0.00
( 1.28 ) ( 1.85 )

0.49 -8.92 0.00
( 1.31 ) ( -1.56 )

Panel B: 1970Q1 - 2010Q3

-1.44 326.26 39.32 -558.14 0.03
( -1.57 ) ( 1.81 ) ( 0.62 ) ( -2.14 )

0.37 0.29 0.00
( 0.96 ) ( 1.89 )

0.41 -8.80 0.00
( 1.04 ) ( -1.52 )

Panel C: 1975Q1 - 2010Q3

-1.37 364.09 34.31 -454.57 0.02
( -1.43 ) ( 2.01 ) ( 0.50 ) ( -1.96 )

0.51 0.21 -0.00
( 1.2 ) ( 1.29 )

0.55 -8.03 0.00
( 1.35 ) ( -1.32 )
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Table 5: Return Predictability Comparison at One-Quarter Horizon

This table reports the results from predictive regressions of stock market returns at one-month horizon on lagged

latent variables, the cay factor (Lettau and Ludvigson, 2001), and output gap (Cooper and Priestley, 2009). The

cay factor is taken from Sidney Ludvigson’s website. The output gap is the residual µt from the following regression

over the 1966m01 and 2010m09 sample: yt = a + b · t + c · t2 + µt, where yt is the log of industrial production

at month t . Panels A, B and C present the results for three data periods, 1966Q1-2010Q3, 1970Q1-2005Q4, and

1975Q1-2005Q4, respectively. Within each panel, the results of an OLS regression where quarterly latent shocks,

the cay factor, and the gap, predict stock returns of one quarter ahead, respectively. The Newey-West corrected

t-statistics are reported in parentheses and R̄2 is the adjusted R2.

constant NT INV MP cay gap R̄2

Panel A: 1966Q1 - 2010Q3

-0.04 9.33 1.78 -8.67 0.04
( -2.14 ) ( 3.04 ) ( 1.48 ) ( -2.23 )

0.01 0.01 0.02
( 1.87 ) ( 2.44 )

0.01 -0.29 0.03
( 2.03 ) ( -2.52 )

Panel B: 1970Q1 - 2010Q3

-0.04 9.94 1.77 -8.69 0.04
( -2.07 ) ( 3.00 ) ( 1.43 ) ( -2.10 )

0.01 0.01 0.02
( 1.80 ) ( 2.41 )

0.01 -0.28 0.03
( 2.03 ) ( -2.45 )

Panel C: 1975Q1 - 2010Q3

-0.02 8.39 0.81 -6.36 0.02
( -1.31 ) ( 2.56 ) ( 0.65 ) ( -1.44 )

0.02 0.01 0.01
( 2.19 ) ( 1.68 )

0.02 -0.20 0.01
( 2.53 ) ( -1.66 )
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Table 6: Return Predictability Comparison at One-Year Horizon

This table reports the results from predictive regressions of stock market returns at one-month horizon on lagged

latent variables, the cay factor (Lettau and Ludvigson, 2001), and output gap (Cooper and Priestley, 2009). The

cay factor is taken from Sidney Ludvigson’s website. The output gap is the residual µt from the following regression

over the 1966m01 and 2010m09 sample: yt = a + b · t + c · t2 + µt, where yt is the log of industrial production

at month t . Panels A, B and C present the results for three data periods, 1966Q1-2010Q3, 1970Q1-2005Q4, and

1975Q1-2005Q4, respectively. Within each panel, the results of an OLS regression where quarterly latent shocks,

the cay factor, and the gap, predict stock returns of one year ahead, respectively. The Newey-West corrected

t-statistics are reported in parentheses and R̄2 is the adjusted R2.

constant NT INV MP cay gap R̄2

Panel A: 1966Q1 - 2010Q3

-0.03 6.62 11.96 -24.58 0.11
( -0.61 ) ( 0.81 ) ( 3.18 ) ( -2.72 )

0.05 0.03 0.10
( 2.61 ) ( 3.35 )

0.06 -1.02 0.09
( 3.05 ) ( -2.90 )

Panel B: 1970Q1 - 2010Q3

-0.07 17.41 11.17 -28.94 0.13
( -1.65 ) ( 2.50 ) ( 2.88 ) ( -3.79 )

0.06 0.03 0.10
( 2.56 ) ( 3.10 )

0.06 -0.96 0.08
( 3.10 ) ( -2.71 )

Panel C: 1975Q1 - 2010Q3

-0.05 18.09 8.81 -21.25 0.07
( -1.18 ) ( 2.55 ) ( 2.09 ) ( -2.47 )

0.06 0.02 0.05
( 2.66 ) ( 2.26 )

0.07 -0.72 0.05
( 3.37 ) ( -2.01 )

32



Figure 1: Estimated Latent Variables
This figure plots the estimated latent variables: total factor productivity µz, investment-specific technology µψ,

and monetary policy shock µV for sample period 1966Q1 - 2010Q3.
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