
On the Bootstrap for Moran’s I Test for Spatial DependenceI

Fei Jina,1, Lung-fei Leeb

aSchool of Economics, Shanghai University of Finance and Economics, Shanghai 200433 China
bDepartment of Economics, The Ohio State University, Columbus, OH 43210 USA

Abstract

This paper is concerned with the use of the bootstrap for statistics in spatial econometric models, with a focus

on the test statistic for Moran’s I test for spatial dependence. We show that, for many statistics in spatial

econometric models, the bootstrap can be studied based on linear-quadratic (LQ) forms of disturbances. By

proving the uniform convergence of the cumulative distribution function for LQ forms to that of a normal

distribution, we show that the bootstrap is generally consistent for test statistics that can be approximated by

LQ forms, including Moran’s I. Possible asymptotic refinements of the bootstrap are most commonly studied

using Edgeworth expansions. For spatial econometric models, we may establish asymptotic refinements of

the bootstrap based on asymptotic expansions of LQ forms. When the disturbances are normal, we prove

the existence of the usual Edgeworth expansions for LQ forms; when the disturbances are not normal, we

establish an asymptotic expansion of LQ forms based on martingales. These results are applied to show the

second order correctness of the bootstrap for Moran’s I test.
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1. Introduction

The bootstrap is a statistical procedure that estimates distributions of estimators or test statistics by

resampling the data. Its approximations can be at least as good as those from the first-order asymptotic

theory under mild conditions for many econometric estimators and test statistics. In some cases, it can be

used as an alternative when evaluating an asymptotic distribution is difficult. A more appealing feature

of the bootstrap is that it is often more accurate in finite samples than the asymptotic theory, i.e., it can

provide asymptotic refinements. The bootstrap is frequently used to correct biases of estimators, estimate

critical values for hypothesis tests, construct confidence intervals, etc. Useful survey papers on the bootstrap
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include, among others, DiCiccio and Efron (1996), MacKinnon (2002), Davison et al. (2003), and Horowitz

(2001, 2003).

The bootstrap has been discussed and implemented by many researchers for models in spatial economet-

rics. Anselin (1988, 1990) discusses the bootstrap estimation in spatial autoregressive (SAR) models, which

is implemented by Can (1992). Fingleton (2008) and Fingleton and Le Gallo (2008) use the bootstrap to

test the significance of the moving average parameter in models with spatial moving average disturbances.

Lin et al. (2011) investigate the properties of bootstrapped Moran’s I under heterogeneous and non-normal

disturbances with a Monte Carlo study. Fingleton and Burridge (2010) find that the bootstrap can es-

sentially remove the size distortion of the spatial J test in Kelejian (2008) in Monte Carlo studies. Yang

(2011) proposes the residual bootstrap for LM tests of spatial dependence. Su and Yang (2008) suggest a

bootstrap procedure that leads to a robust estimate of a variance-covariance matrix. Yang (2012) propos-

es a bootstrap procedure to correct biases and variances of quasi-maximum likelihood estimators for SAR

models. Monchuk et al. (2011) compare several bootstrap methods in Monte Carlo studies for constructing

confidence intervals in a spatial error model.

Although there have been many applications of the bootstrap in spatial econometric models, including

Monte Carlo studies in the preceding papers, its validity for these models has not been formally justified. As

more researchers see the need to explicitly deal with problems caused by spatial dependence, the bootstrap

may be used often for spatial econometric models. Formal justification of the bootstrap for spatial econo-

metric models can help us to reach reliable conclusions. The objective of this paper is to establish a general

consistency result of the bootstrap which may be useful for a bunch of statistics—including Moran’s I—in

spatial econometric models and show that the bootstrap can provide asymptotic refinements for Moran’s

I. We demonstrate that many estimators in spatial econometric models can be approximated by linear-

quadratic (LQ) forms of the disturbances, and test statistics are either approximated by or closely related to

LQ forms, due to the presence of spatial dependence. The bootstrap for many spatial econometric models

thus can be studied based on LQ forms in general. Kelejian and Prucha (2001) prove asymptotic normality of

LQ forms using a central limit theorem for martingale difference arrays. We shall show that the convergence

of the cumulative distribution function (CDF) for an LQ form is uniform under the same conditions. Using

this uniform convergence, the bootstrap may generally be consistent for statistics that can be approximated

by an LQ form. We apply the result to show formally consistency of the bootstrap for Moran’s I.

Possible asymptotic refinements of the bootstrap are most commonly studied using Edgeworth expan-

sions. For statistics in spatial econometric models, we may investigate whether the bootstrap can provide

asymptotic refinements by considering Edgeworth expansions of LQ forms. Such expansions, however, have

not been proved to exist in the literature. For non-spatial econometric models, the bootstrap is often con-

sidered for statistics that are smooth functions of sample averages of independent random vectors, see, e.g.,

Hall (1997), or stationary dependent random vectors, see, e.g., Götze and Hipp (1983, 1994), for which the
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Edgeworth expansions are well established. This framework does not apply to LQ forms, which cannot be

written as simple averages of disturbances. A related statistic is the U-statistic, for which the Edgeworth

expansions have been established (see, e.g., Bickel et al. (1986) and Jing and Wang (2003)). However, in

these results, the kernel is a fixed function.2 For spatial econometric statistics, the involved square matrix

in an LQ form changes as the sample size changes. The row and column sum norms of this square matrix

are usually bounded, but the value of a particular element is not constrained further. Thus, as shown later,

an LQ form can be partly seen as a generalized U-statistic with changing kernels, for which no existing

results can be applied. As a result, we might need to study the LQ form as a whole to a large extent. Götze

et al. (2007) establishes a one-term asymptotic expansion for a quadratic form based on a symmetrization

inequality and the differential inequality method. However, the expansion does not have a remainder term

of a desirable order as in a usual Edgeworth expansion.3

We shall show the existence of formal Edgeworth expansions for LQ forms of normal disturbances. With

normal disturbances, the characteristic functions of LQ forms are available. The expansions are established

by using a smoothing inequality that bounds the gap between two functions with related Fourier transforms.

The special feature of the square matrix involved in an LQ form for spatial econometric models, i.e., the

boundedness in both row and column sum norms, can be used to obtain the order of the bound. When

the disturbances are not normal, using the method to establish the usual Edgeworth expansion might not

work. We highlight that an LQ form, unlike a linear form, can be neither written as a simple average so

that some common structures of elements in the average can be explored, nor written as a U-statistic with

a fixed kernel. Alternatively, by decomposing an LQ form into a sum of martingale differences, we show

that an LQ form of non-normal disturbances has an asymptotic expansion based on martingales (Mykland,

1993). The expansion is in a test function topology. While it is not in a point-wise topology, it does not

require strong conditions such as Cramér-type conditions. We apply these results to show the second order

correctness of the bootstrap for Moran’s I.4

The rest of the paper is organized as follows: Section 2 first introduces Moran’s I statistics considered

in this paper, then shows the uniform convergence of the CDF for LQ forms, and finally applies the result

to show that the bootstrap is consistent for Moran’s I. Section 3 establishes the Edgeworth expansion

2In the papers mentioned above, expansions for the standardized version of a U-statistic of degree two Un =

2
n(n−1) ∑1≤i<j≤n h(Xi,Xj) is considered. The kernel h(Xi,Xj) is the same for any i, j with i ≠ j.

3In that paper, the sum of all squared elements in the square matrix of a quadratic form is assumed to be finite. The square

matrix in an LQ form for spatial econometric models is usually bounded in both row and column sum norms. By dividing

each element of a quadratic form for spatial econometric models by the square root of the sample size, the result in that paper

can be applied and it is easy to see that the remainder term in the expansion does not have a desirable order as in a usual

Edgeworth expansion.
4In Mykland (1993), the asymptotic expansion for martingales is called Edgeworth expansion for martingales and is used

to show the second order correctness of the bootstrap for an AR(1) process.
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of an LQ form with normal disturbances and an asymptotic expansion of an LQ form with non-normal

disturbances, which are then applied to show the second-order correctness of the bootstrap for Moran’s I.

Some Monte Carlo results are reported in Section 4. Section 5 concludes. Lemmas and proofs are collected

in the appendices.

2. Consistency of the Bootstrap

As pointed out by Anselin and Bera (1998), a fundamental problem in dealing with spatial dependence

is that it is impossible to estimate general n × n covariance terms or correlations directly from a set of n

observations on cross-sectional data. This necessitates the imposition of structure. A main approach is the

lattice perspective, where, for each spatial unit, a relevant “neighborhood set” interacting with it is specified

with an n × n spatial weights matrix Mn. With this matrix, spatial dependence is modeled as a functional

relationship between a vector of dependent variable yn (or disturbances εn) with its associated spatial lag

Mnyn (or Mnεn). Popular spatial econometric models include SAR models, spatial error (SE) models,

spatial moving average (SMA) models, spatial Durbin models, and SAR models with SAR errors (SARAR

models). For estimators of spatial econometric models, derivatives of corresponding criterion functions for

the quasi-maximum likelihood (QML), instrumental variables and generalized method of moments evaluated

at the true parameter vector are often LQ forms of the disturbances, rather than just linear forms, due to

the presence of spatial dependence.5 As a result, the corresponding estimators can be studied using an LQ

form. Based on asymptotic normality of these estimators, one can implement classical hypothesis tests such

as the Wald, likelihood ratio or Lagrangian multiplier (LM) tests, and tests of non-nested hypotheses such

as the spatial J-type tests (Kelejian, 2008; Kelejian and Piras, 2011) or Cox-type tests (Jin and Lee, 2013).

Of particular interest, Moran’s I (Moran, 1950; Cliff and Ord, 1973, 1981) is a popular test for spatial

dependence. Because of its importance, we focus in this paper on using LQ forms to study the bootstrap

for Moran’s I test.

2.1. Moran’s I Test and the Bootstrap

The Moran I statistic is
n

l′nMnln
⋅
ε̂′nMnε̂n
ε̂′nε̂n

, (1)

where ln is an n-dimensional vector of ones and ε̂n = (ε̂n1, . . . , ε̂nn)
′ is the residual vector from the least

squares estimation. The test is based on asymptotic normality of a standardized test statistic by deducting

the estimated mean and dividing by the standard error. Burridge (1980) shows that for the regressive

equation yn = Xnβ + un with SAR errors un = ρMnun + εn, or with SMA errors un = ρMnεn + εn, where

5See, e.g., Kelejian and Prucha (1998); Lee (2004a, 2007).
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εn ∼ N(0, σ2In), Xn is an n × kx matrix of exogenous variables and In is the n × n identity matrix, the LM

test statistic for ρ = 0 is proportional to the Moran I statistic, which is

In =
n

√
tr(M2

n +M
′
nMn)

⋅
ε̂′nMnε̂n
ε̂′nε̂n

. (2)

Let Hn = In −Xn(X
′
nXn)

−1X ′
n. Under the null hypothesis of no spatial dependence, (2) becomes

In =
n

√
tr(M2

n +M
′
nMn)

ε′nHnMnHnεn
ε′nHnεn

=
n

√
tr(M2

n +M
′
nMn)

ε′nHnMnHnεn − σ
2
0 tr(MnHn)

(n − kx)σ2
0

+
n

√
tr(M2

n +M
′
nMn)

tr(MnHn)

n − kx

−
n

√
tr(M2

n +M
′
nMn)

ε′nHnMnHnεn(ε
′
nHnεn − (n − kx)σ

2
0)

(n − kx)σ2
0ε
′
nHnεn

.

(3)

Under some regularity assumptions and due to the spatial weights matrix Mn having a zero diagonal, the

last two terms on the r.h.s. of (3) have the order OP (n−1/2), thus the LM or Moran I statistic can be

approximated by a quadratic form of the disturbances. The In is asymptotically normal under the null

hypothesis, then (2) can be used directly for test purposes without adjusting for the mean and variance.

Kelejian and Prucha (2001) propose a generalized Moran’s I test for which the test statistic equals a quadratic

form of some regression residuals divided by a normalizing factor. Their regularity conditions guarantee that

the test statistic can be approximated by an LQ form. Note that when the disturbances are not normal, the

proper asymptotic distribution of In in (2) is not standard normal. Thus, following Kelejian and Prucha

(2001), we propose to use the following statistic for non-normal εn:

I′n =
ε̂′nMnε̂n − σ̂

2
n tr(MnHn)

√
nσ̂cn

, (4)

where σ̂2
n = n−1ε̂′nε̂n is an estimate of the variance σ2

0 = E(ε2ni), and σ̂2
cn is an estimate of the variance σ2

cn

of n−1/2ε̂′nMnε̂n under the null, with σ2
cn = n−1(µ4 − 3σ4

0)∑
n
i=1(HnMnHn)

2
ii +n

−1σ4
0 tr[HnMnHn(Mn +M

′
n)]

and µ4 = E(ε4ni). For analytical tractability, we let σ̂2
cn = max{σ̂2

cn , cσ} for some positive constant cσ smaller

than σ2
cn for any n, so that σ̂2

cn is bounded away from zero, where σ̂2
cn = n−1(µ̂4n − 3σ̂4

n)∑
n
i=1(HnMnHn)

2
ii +

n−1σ̂4
n tr[HnMnHn(Mn+M

′
n)] with µ̂4n = n

−1
∑
n
i=1 ε̂

4
ni.

6 Similar to In, I′n can be approximated by a quadratic

form with a remainder of order OP (n−1/2).7

To consider the bootstrap for Moran’s I, we first briefly discuss the bootstrap for a general statistic

tn for a spatial econometric model which is asymptotically normal with mean zero. The tn would involve

spatial weights matrices, exogenous variables and dependent variables. The dependent variables in tn can

be replaced by their reduced forms as functions of disturbances εn = (εn1, . . . , εnn)
′, exogenous variables

6The censored variance estimate σ̂2
cn would not be a practical issue once underflowing in machine precision is controlled for.

7Compared to In, I′n has a mean adjustment term −
σ̂2
n tr(MnHn)
√
nσ̂cn

= OP (n
−1/2
). This is for analytical convenience.
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and the true parameter vector θ0. The tn may also involve an estimator θ̂n of θ0 and an estimator ς̂n of

another moment parameter vector ς0 for εni. To compute a bootstrapped version of tn, a proper bootstrap

procedure needs to be considered. The spatially dependent variable usually cannot be resampled directly,

because doing so would destroy the inherent dependence structure. Instead, the residual bootstrap can be

used, as the disturbances εni’s are assumed to be i.i.d., or one can use the parametric bootstrap if one has

a parametric model for the disturbances. We may first derive a consistent estimator of parameters in a

spatial econometric model and compute the residual vector ε̂n. For the residual bootstrap, we first deduct

the empirical mean of the residual vector from ε̂n to obtain ε̃n = (In −
1
n
lnl

′
n)ε̂n as the ε̂n may not have

mean zero,8 and then sample randomly with replacement n times from the elements of ε̃n to obtain a vector

ε∗n.9 For the parametric bootstrap for residuals, ε∗n can be sampled independently from the estimated model

for disturbances. In particular, if we consider the case that εni’s are normal, then we may sample n times

from the normal distribution with mean zero and variance n−1ε̂′nε̂n to obtain a vector ε∗n. With ε∗n, a pseudo

data vector y∗n on the dependent variable can be computed by using the reduced form with the parameter

estimate θ̂n and disturbances ε∗n. For example, for the SMA model, we have y∗n = Xnβ̂n + (In + ρ̂nMn)ε
∗
n.

Estimating θ using y∗n yields θ̂∗n and a residual vector ε̂∗n. The bootstrapped version of tn, t∗n, is the statistic

obtained from replacing εn, θ0, θ̂n and ς̂n in tn by, respectively, ε∗n, θ̂n, θ̂∗n and ς̂∗n, where ς̂∗n is a vector of

sample moments of ε̂∗n that correspond to the moment parameters in ς0. For Moran’s I, due to its simplicity,

the bootstrapped In and I′n can be obtained by replacing ε̂n with ε̂∗n everywhere.10

2.2. A standard LQ Form

Consider a standardized LQ form cn/σcn , where

cn = n
−1/2(ε′nAnεn − σ

2
0 tr(An) + b

′
nεn) (5)

is an LQ form with mean zero and variance σ2
cn = n−1[2σ4

0 tr(A2
n)+σ

2
0b
′
nbn+∑

n
i=1((µ4−3σ4

0)a
2
n,ii+2µ3an,iibni)],

with εn = (εn1, . . . , εnn)
′ being a vector of i.i.d. disturbances which have mean zero, variance σ2

0 , third

moment µ3 and fourth moment µ4, An = [an,ij] being an n × n non-stochastic symmetric matrix11, and

bn = (bn1, . . . , bnn)
′ being an n-dimensional non-stochastic vector. Let c∗n = n

−1/2(ε∗
′
n Anε

∗
n−σ

∗2
n tr(An)+b

′
nε

∗
n)

with variance σ∗2cn = n−1[2σ∗4n tr(A2
n) + σ

∗2
n b

′
nbn +∑

n
i=1((µ

∗
4n − 3σ∗4n )a2n,ii + 2µ∗3nan,iibni)] conditional on the

8Freedman (1981) shows the necessity of recentering for regression models. For the popular SARAR model, if Xn contains

ln, an intercept term in the model, then the residuals from the QML estimation have mean zero and there is no need to recenter.
9That is, generate the bootstrap error terms from the empirical distribution function of the recentered residuals.

10This is the case when the bootstrap DGP is the null model with no spatial dependence. We consider only this case in this

paper. The bootstrap DGP can also be the unrestricted alternative model when generating the bootstrap data vector. See

MacKinnon (2002) for discussions. If the bootstrap DGP is the alternative model, which might be the SAR, SE or SARAR

model, similar results can be proved with the lemmas in the appendices.
11As ε′nAnεn = ε′n(An +A

′

n)εn/2, it is w.l.o.g. to assume the symmetry of An.
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bootstrap sampling process, where σ∗2n = n−1ε̃′nε̃n, µ∗3n = n−1∑
n
i=1 ε̃

3
ni and µ∗4n = n−1∑

n
i=1 ε̃

4
ni for the residual

bootstrap, and σ∗2n = n−1ε̂′nε̂n, µ∗3n = 0 and µ∗4n = 3(n−1ε̂′nε̂n)
2 for the parametric bootstrap with normal

disturbances. We assume the following conditions on the components of cn/σcn :

Assumption 1. The εni’s in εn = (εn1, . . . , εnn)
′ are i.i.d. (0, σ2

0) and E ∣εni∣
4(1+δ) <∞ for some δ > 0.

Assumption 2. The sequence of symmetric matrices {An} are bounded in both row and column sum norms,

and elements of vectors {bn} satisfy supn n
−1
∑
n
i=1 ∣bni∣

2(1+δ) <∞.

Assumption 3. The sequence {σ2
cn} is bounded away from zero.

The An and bn are functions of spatial weights matrices and exogenous variables. As spatial weights

matrices are often assumed to be bounded in both row and column sum norms and the elements of exogenous

variables are assumed to be bounded constants (Kelejian and Prucha, 1998; Lee, 2004a), it is reasonable to

impose Assumption 2. Kelejian and Prucha (2001) have proved the asymptotic normality of cn/σcn under

Assumptions 1–3. Under the same conditions, we can have the uniform convergence of the CDF of cn/σcn

to that of a standard normal variable as subsequently shown. As in Kelejian and Prucha (2001), we write

cn as a sum of martingale differences, then theorems in Heyde and Brown (1970) and Haeusler (1988) on

the departure of cn/σcn from the standard normal distribution are applicable.

2.3. Uniform Convergence of CDFs

Let Φ(x) be the CDF for a standard normal random variable, and P∗ and E∗ be, respectively, the

probability distribution and expectation induced by the bootstrap sampling process. Under Assumption 2,

let Ka and Kb be finite constants such that, for any n,

sup
1≤j≤n

n

∑
i=1

∣an,ij ∣ ≤Ka, sup
1≤i≤n

n

∑
j=1

∣an,ij ∣ ≤Ka, and
1

n

n

∑
i=1

∣bni∣
2(1+η)

≤Kb for any η ∈ (−1, δ].

Suppose that tn is a statistic that can be approximated by a standardized LQ form cn/σcn with cn given in

(5) such that dn = tn − cn/σcn converges to zero in probability. Correspondingly, d∗n = t
∗
n − c

∗
n/σ

∗
cn , where, as

described earlier, t∗n, c∗n and σ∗cn are bootstrapped quantities of, respectively, tn, cn and σcn .

Theorem 1. Under Assumptions 1–3,

sup
x∈R

∣P(cn/σcn ≤ x) −Φ(x)∣ ≤ rn, (6)

sup
x∈R

∣P∗
(c∗n/σ

∗
cn ≤ x) −Φ(x)∣ ≤ r∗n, (7)

sup
x∈R

∣P(cn/σcn + dn ≤ x) −Φ(x)∣ ≤ rn + (2π)−1/2τ +P(∣dn∣ > τ). (8)

sup
x∈R

∣P∗
(c∗n/σ

∗
cn + d

∗
n ≤ x) −Φ(x)∣ ≤ r∗n + (2π)−1/2τ +P∗

(∣d∗n∣ > τ). (9)
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where τ is an arbitrary positive number, rn =Kσ
−2(1+δ1)/(3+2δ1)
cn n−δ1/(3+2δ1)((Ka+1)1+2δ1(KaE ∣ε2ni−σ

2
0 ∣

2+2δ1+

22+2δ1Ka(E ∣εni∣
2+2δ1)2 + KbE ∣εni∣

2+2δ1) + 41+δ1(σ4
0K

4
a(µ4 − σ

4
0) + 4σ8

0K
4
a + σ

2
0K

2
a(µ

2
3Ka + σ

4
0Kb)(Ka + 1) +

2∣µ3∣σ
2
0K

3
a(∣µ3∣Ka + σ

2
0Kb))

(1+δ1)/2
)
1/(3+2δ1)

with δ1 = min{δ,1} and K being a constant depending only

on δ1, and r∗n is a term obtained from replacing the population moment parameters of εni in rn with the

corresponding sample moments of ε̃n.

The l.h.s. of (6) is the Kolmogorov-Smirnov distance between the CDFs of two random variables. The

inequality gives a rate of convergence, O(n−δ1/(3+2δ1)), of the CDF of cn/σcn to that of a standard normal

random variable. The larger δ1 is, i.e., the higher moments of εni assumed to exist, the faster is the

convergence. The expression for rn can be simplified if we let Ka and Kb be max{Ka,Kb}. The different

Ka and Kb allow for better approximation of the constant factor of the rate of convergence. A similar result

for the bootstrapped version of cn/σcn is given in (7). The results in (8) and (9) are shown by using (6) and

(7). They imply immediately that

sup
x∈R

∣P∗
(t∗n ≤ x) −P(tn ≤ x)∣ ≤ rn +P(∣dn∣ > τ) + r

∗
n +P∗

(∣d∗n∣ > τ) +

√
2

π
τ. (10)

As τ is arbitrary, to prove consistency of the bootstrapped tn, we may show that, except for the last one,

the r.h.s. terms converge to zero (in probability) for any τ > 0. This type of convergence with respect to

the Kolmogorov-Smirnov distance implies asymptotic consistency of confidence intervals. If we can show

that the sample moments of ε̃n converge in probability to finite constants, then the continuous mapping

theorem implies that r∗n is of order OP (n−δ1/(3+2δ1)). The remainder term dn is assumed to converge to zero

in probability, so it only remains to show that P∗
(∣d∗n∣ > τ) = oP (1).

For statistics with non-unit asymptotic variances, e.g., various estimators, we may rescale those statistics

and apply (6) and (7) for the proof of consistency. Let tnen be a statistic of interest, where en is a positive

non-stochastic term that may depend on n, θ0 and moment parameters of εni. The bootstrapped statistic

corresponding to tnen is t∗ne
∗
n, where e∗n is a term obtained from replacing θ0 and population moment

parameters of εni in en by, respectively, θ̂n and corresponding sample moments of ε̃n. For any η > 0,

P(sup
x∈R

∣P∗
(t∗ne

∗
n ≤ x) −P(tnen ≤ x)∣ > η)

= P(sup
x∈R

∣1(e∗n > 0)(P∗
(t∗n ≤ x/e

∗
n) −P(tn ≤ x/en)) + 1(e∗n ≤ 0)(P∗

(t∗ne
∗
n ≤ x) −P(tnen ≤ x))∣ > η)

≤ P(sup
x∈R

∣(P∗
(t∗n ≤ x/e

∗
n) −Φ(x/e∗n)) − (P(tn ≤ x/en) −Φ(x/en)) + (Φ(x/e∗n) −Φ(x/en))∣ > η/2)

+P(1(e∗n ≤ 0) > η/4)

≤ P(rn +P(∣dn∣ > τ) + r
∗
n +P∗

(∣d∗n∣ > τ) +

√
2

π
τ + sup

x∈R
∣Φ(x/en) −Φ(x/e∗n)∣ > η/2) +P(e∗n ≤ 0),

(11)

where the last inequality follows by (8) and (9), and 1(⋅) is the set indicator. With consistent estimators
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for the parameters in en, we would have P(e∗n ≤ 0) = o(1). Then, for the proof of consistency, it remains to

show that the first term in the last line of (11) tends to zero as n goes to infinity.

2.4. Consistency of the Bootstrapped Moran’s I

Now we apply Theorem 1 to show consistency of the bootstrapped Moran’s I. We make the following

assumptions:

Assumption I1. The εni’s in εn = (εn1, . . . , εnn)
′ are i.i.d. (0, σ2

0) and E ∣εni∣
4(1+δ) <∞ for some δ > 0.

Assumption I2. The matrices {Mn} have zero diagonals and are bounded in both row and column sum

norms.

Assumption I3. The elements of the regressor matrices {Xn} are uniformly bounded constants, and

limn→∞
1
n
X ′
nXn exists and is nonsingular.

Assumption I4. The sequence {(2n)−1σ4
0 tr[(Mn +M

′
n)

2] + n−1(µ4 − 3σ4
0)∑

n
i=1(HnMnHn)

4
ii} is bounded

away from zero.

Assumption I4 requires the variance of n−1/2ε′nHnMnHnεn to be bounded away from zero. When εni’s

are normal, the relevant sequence in the assumption is simplified to be {n−1 tr[(Mn +M
′
n)

2]}. Let I∗n and

I
′
∗
n be, respectively, the bootstrapped In and I′n described earlier.

Proposition 1. Under H0 and Assumptions I1–I4, the Moran I statistic In in (2) satisfies supx∈R ∣P∗
(I∗n ≤

x)−P(In ≤ x)∣ = oP (1) for the parametric bootstrap when εn ∼ N(0, σ2
0In), and I′n in (4) satisfies supx∈R ∣P∗

(I
′
∗
n ≤

x) −P(I′n ≤ x)∣ = oP (1) for the residual bootstrap.

3. Asymptotic Refinements

The bootstrap can provide asymptotic refinements for many statistics whose asymptotic distributions

do not depend on any unknown parameters, i.e., asymptotically pivotal statistics. This is usually shown by

Edgeworth expansions. For a smooth function of sample averages of independent random vectors and/or

stationary dependent random vectors, the Edgeworth expansion has been well established. For statistics

in spatial econometric models, possible asymptotic refinements may be studied by means of asymptotic

expansions for LQ forms. However, an LQ form involves spatial weights matrices and cannot be written as

simple sample averages of disturbances. In addition, note that

cn = n
−1/2

n

∑
i=1

n

∑
j=1,j≠i

an,ijεniεnj + n
−1/2

n

∑
i=1

an,ii(ε
2
ni − σ

2
0) + n

−1/2
n

∑
i=1

bniεni.

The first term on the r.h.s. of the above equation can be regarded as a generalized U-statistic with kernels

hn,ij(x, y) = an,ijxy. Even for this term, with normalization by its standard deviation, the Edgeworth

9



expansion with a remainder term of desirable order has not been established. The second and third terms

add further complication. In this section, we establish the Edgeworth expansion for an LQ form with

normal disturbances, and Mykland’s asymptotic expansion on martingales with non-normal disturbances.

The results are then applied to show the second order correctness of the bootstrap.

3.1. Normal Disturbances

With normal disturbances in an LQ form cn/σcn = n−1/2(ε′nAnεn − σ
2
0 tr(An) + b

′
nεn)/σcn , we can easily

derive the characteristic function of cn/σcn . By a smoothing inequality in Feller (1970), the difference

between a CDF and another function with certain properties has an upper bound generated from the

Fourier transforms of the derivatives of the two functions. Such an inequality has been used to establish the

Berry-Esseen bound for the error in the approximation by a normal distribution or an Edgeworth expansion

to the true distribution for a sample mean of i.i.d. disturbances. As we shall show, it can also be used to

establish the Edgeworth expansion of an LQ form. Let f (k)(x) be the kth order derivative of a function f(x).

We can use the boundedness in both row and column sum norms of the matrix An to bound the derivatives

of the characteristic function or cumulants for an LQ form. As usual, the Edgeworth expansion is expressed

in terms of cumulants, the normal CDF Φ(x) and the normal density function Φ(1)(x). In particular,

note that the third cumulant of the distribution of cn/σcn is 6κn = n
−3/2σ−3cn [8σ

6
0 tr(A3

n) + 6σ4
0b
′
nAnbn] with

σ2
cn = n−1[2σ4

0 tr(A2
n) + σ

2
0b
′
nbn]. The cn/σcn has mean zero, then its third moment is equal to the third

cumulant 6κn. As the disturbances are normal, we consider the parametric bootstrap where the elements

of ε∗n are drawn from the normal distribution with mean zero and variance n−1ε̂′nε̂n.

Theorem 2. Under Assumptions 2 and 3, when εn ∼ N(0, σ2
0In),

sup
x∈R

∣P(cn/σcn ≤ x) − [Φ(x) + κn(1 − x
2
)Φ(1)(x)]∣ = O(n−1), (12)

and

sup
x∈R

∣P∗
(c∗n/σ

∗
cn ≤ x) − [Φ(x) + κ∗n(1 − x

2
)Φ(1)(x)]∣ = OP (n−1), (13)

where κn = n−3/2σ−3cn [4σ
6
0 tr(A3

n)/3 + σ
4
0b
′
nAnbn] = O(n−1/2) with σ2

cn = n−1[2σ4
0 tr(A2

n) + σ
2
0b
′
nbn] and κ∗n =

n−3/2σ∗−3cn [4σ∗6n tr(A3
n)/3 + σ

∗4
n b

′
nAnbn] = OP (n−1/2) with σ∗2cn = n−1[2σ∗4n tr(A2

n) + σ
∗2
n b

′
nbn], and for r ≥ 3,

sup
x∈R

∣P(cn/σcn ≤ x) −Φ(x) −Φ(1)(x)
r

∑
i=3

n−(i−2)/2Pni(x)∣ = O(n−(r−1)/2), (14)

and

sup
x∈R

∣P∗
(c∗n/σ

∗
cn ≤ x) −Φ(x) −Φ(1)(x)

r

∑
i=3

n−(i−2)/2P ∗
ni(x)∣ = OP (n−(r−1)/2), (15)

where Pn3(x), . . . , Pnr(x) are real polynomials with bounded coefficients and P ∗
n3(x), . . . , P

∗
nr(x) are the cor-

responding bootstrapped versions.
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Eqs. (12) and (13) can be used to show that the bootstrap can provide asymptotic refinements for

statistics that can be approximated by an LQ form. Eqs. (14) and (15) present general high order Edgeworth

expansions for the CDF of an LQ form. Note that κn has a relatively simple form. Instead of bootstrapping

test statistics, we may correct the bias distortion for test statistics that can be approximated by an LQ

form.12 The above theorem can be applied to show that the bootstrapped Moran’s I is often more accurate

than the first-order asymptotic approximation. While the approximation of asymptotic theory to the true

distribution has the order OP (n−1/2), the following proposition shows that approximation of the bootstrap

has the smaller order OP (n−1):

Proposition 2. Under H0 and Assumptions I1–I4, the Moran I statistic In with normal disturbances in

(2) satisfies P∗
(I∗n ≤ x) −P(In ≤ x) = OP (n−1) for the parametric bootstrap.

3.2. Non-normal Disturbances

For LQ forms with non-normal disturbances, a theorem on an asymptotic expansion for martingales

in Mykland (1993) can be applied to establish an expansion, which is called the Edgeworth expansion for

martingales by the author. Mykland (1993) considers an asymptotic expansion for the distribution function

Fn(x) of a triangular array of normalized zero-mean martingales. The conditions needed are integrability

and central limit conditions imposed on the normalizing factor and variation measures associated with

martingales, the optional and predictable kth-order variations.13 Under those conditions, the distribution

function Fn(x) has an expansion of the form

∫

∞

−∞
h(x)dFn(x) = ∫

∞

−∞
h(x)dΦ(β−1x) +

1

2
rn ∫

∞

−∞
[β2ψ(x)h′′(βx) − βxψ∗(x)h

′
(βx)]dΦ(x) + o(rn), (16)

where β is a parameter, rn is a nonstochastic sequence going to zero, and ψ(x) and ψ∗(x) are defined in

the central limit condition, uniformly over large classes of twice differentiable functions h. Subject to some

minimum niceness on the part of ψ and ψ∗, the second term on the r.h.s. of (16) can be shown via integration

by parts to equal

1

2
rn ∫

∞

−∞
h(x)d[(ψ(1)(β−1x) − ψ(β−1x)β−1x + ψ∗(β

−1x)β−1x)Φ(1)(β−1x)].

If o2(rn) is used to denote the kind of convergence in (16), then a more standard way of stating an expansion

is14

Fn(x) = Φ(β−1x) +
1

2
rn(ψ

(1)
(β−1x) − ψ(β−1x)β−1x + ψ∗(β

−1x)β−1x)Φ(1)(β−1x) + o2(rn),

12Robinson and Rossi (2010) have considered a finite sample correction of Moran’s I test for a pure SAR model. They have

not shown the validity of their expansion for the CDF of Moran’s I test statistic, which is in terms of the CDF for a chi-square

distribution.
13They are defined as, respectively, the sum of the kth powers of the martingale differences and the sum of expected values

of the kth powers conditional on the filtration.
14Please refer to Theorem A in Appendix D for more details.
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due to Mykland (1993).

In the current case, cn/σcn can be decomposed as a sum of martingale differences that are quadratic

in the disturbances. We need the existence of E ∣εni∣
4(1+η) for some η > 0 to show asymptotic normality of

cn/σcn , by means of a central limit theorem for martingales. For the central limit theorem relating to the

optional square variations, higher moments for εni are required to exist. Furthermore, a slightly stronger

condition on bn is also assumed.

Assumption 1′. The εni’s in εn = (εn1, . . . , εnn)
′ are i.i.d. (0, σ2

0) and E ∣εni∣
8(1+δ) <∞ for some δ > 0.

Assumption 2′. The symmetric matrices of the sequence {An} are bounded in both row and column sum

norms and the elements of the vectors {bn} satisfy supn n
−1
∑
n
i=1 ∣bni∣

4(1+δ) <∞.

Theorem 3. Under Assumptions 1′, 2′ and 3, we have

∫

+∞

−∞
h(x)dFn(x) = ∫

+∞

−∞
h(x)dΦ(x) +

1

2
n−1/2 ∫

+∞

−∞
h(x)d[(ψ(1)(x) − ψ(x)x)Φ(1)(x)] + o(n−1/2), (17)

and

∫

+∞

−∞
h(x)dF ∗

n(x) = ∫
+∞

−∞
h(x)dΦ(x) +

1

2
n−1/2 ∫

+∞

−∞
h(x)d[(ψ(1)(x) − ψ(x)x)Φ(1)(x)] + oP (n−1/2), (18)

where Fn(x) = P(cn/σcn ≤ x), F ∗
n(x) = P∗

(c∗n/σ
∗
cn ≤ x), and ψ(x) = 1

3
ψo(x) +

2
3
ψp(x) with ψo(x) and

ψp(x) being linear functions given in (D.11)–(D.14), uniformly on the set ` of functions h which are twice

differentiable, with h, h(1) and h(2) uniformly bounded, and with {h(2), h ∈ `} being equicontinuous a.e.

Lebesgue. Denote the convergence in (17) by o2(n
−1/2) (Mykland, 1993), then

Fn(x) = Φ(x) +
1

2
n−1/2(ψ(1)(x) − ψ(x)x)Φ(1)(x) + o2(n

−1/2
), (19)

and

F ∗
n(x) = Φ(x) +

1

2
n−1/2(ψ(1)(x) − ψ(x)x)Φ(1)(x) + o2(n

−1/2
) in probability. (20)

As pointed out by Mykland (1993), the expansion as in (17) generally does not hold for an indicator

function h of an interval. So (19) is a “smoothed” expansion. Note that ψo(x) and ψp(x) are linear in x,

hence ψ(1)(x) − ψ(x)x = (1 − x2)ψ(1)(x). In the special case that εni’s are i.i.d. normal, we can verify that

1
2
ψ(1)(x) = limn→∞ n1/2κn, thus (19) has similar terms as the usual one-term Edgeworth expansion (12).

With this theorem, we can show the second-order correctness with the order o2(n
−1/2) of the bootstrap for

Moran’s I with non-normal disturbances.

Assumption I1′. The εni’s in εn = (εn1, . . . , εnn)
′ are i.i.d. (0, σ2

0) and E ∣εni∣
8(1+δ) <∞ for some δ > 0.
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Proposition 3. Under H0 and Assumptions I1′, I2–I4, the Moran I statistic I′n in (4) satisfies

∫

+∞

−∞
h(x)d[F ∗

n(x) − Fn(x)] = oP (n−1/2), (21)

where F ∗
n(x) = P∗

(I
′
∗
n ≤ x) and Fn(x) = P(I′n ≤ x), uniformly for the set of functions h in Theorem 3. That

is, F ∗
n(x) = Fn(x) + o2(n

−1/2) in probability, in the sense that (21) holds.

4. Monte Carlo Study

We conduct some Monte Carlo experiments to compare the finite sample performance of the bootstrap

and first order asymptotic theory for Moran’s I test. The data generating process (DGP) is either the SAR

model

yn = ρMnyn +Xnβ + εn, (22)

or the SE model

yn =Xnβ + un, un = ρMnun + εn, (23)

where the exogenous variable matrix Xn consists of an intercept term, a variable generated from the standard

normal distribution and a variable generated from the uniform distribution U[0,1]. Several spatial weights

matrices are considered: the first one, denoted by “bd49”, is a block diagonal matrix with the diagonal

blocks being the continuity matrix for 49 neighborhoods in Columbus, OH from Anselin (1988); the second

and third ones are generated according to, respectively, the queen and rook criteria; several “circular” world

matrices as in Kelejian and Prucha (1999) are also considered. In a “circular” world matrix, each spatial unit

is related to k spatial units immediately before it and k immediately after it for some positive integer k, and

all nonzero elements in a row are equal. As k increases, the density of a “circular” world matrix increases.

We consider k = 1, 3, 5 and denote the corresponding matrices by “cir2”, “cir6” and “cir10”, respectively.

Every spatial weights matrix is row normalized to have row sum equal to 1. The sample sizes considered

are n = 49, 98, 147 and 196.15 Two designs of disturbances are considered: in the first one, the disturbances

are randomly drawn from the standard normal distribution and the Moran I statistic is computed using

(2); in the second one, the disturbances are randomly drawn from the normalized chi-square distribution

(χ2(3) − 3)/
√

6 and the Moran I statistic is computed using (4) with cσ = 0.0001. The parameter ρ in

the SAR and SE models takes values 0, 0.1, 0.3, 0.5, 0.7, −0.1, −0.3, −0.5, and −0.7. The nominal level of

significance for Moran’s I test is set to 5%. The number of Monte Carlo repetitions is 5000 and the number

of bootstrap samples is 399.

15For n = 98, the second and third matrices are first generated on a 10 × 10 lattice, then the last 2 rows are deleted from

these matrices. Similarly, for n = 147, the second and third matrices are first generated on a 13 × 13 lattice, then the last 22

rows are deleted.
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Table 1: Empirical size and power of the asymptotic and bootstrap tests with normal disturbances

size power (SAR model) power (SE model)

ρ = 0.0 0.1 0.3 0.5 0.7 −0.1 −0.3 −0.5 −0.7 0.1 0.3 0.5 0.7 −0.1 −0.3 −0.5 −0.7

n=49
bd49 asym 4.1 5.8 28.7 71.9 96.5 6.1 19.1 41.6 66.2 5.7 26.0 66.6 94.1 6.4 21.2 51.0 78.5

bs 5.0 8.0 34.2 75.2 97.2 6.6 19.8 42.4 66.0 7.7 30.5 70.9 95.2 6.8 21.4 51.1 78.4
rook asym 4.5 4.8 24.6 66.2 94.3 9.4 39.7 79.6 98.1 5.4 24.4 64.0 93.1 9.2 39.4 78.7 98.0

bs 4.9 7.7 32.6 73.8 96.4 7.9 34.3 75.4 97.3 7.9 32.6 72.1 95.5 7.6 34.1 74.8 97.2
queen asym 3.7 5.3 20.1 58.7 89.9 4.9 11.9 27.2 44.5 5.0 19.8 50.8 85.0 4.7 12.7 31.0 56.3

bs 5.2 7.2 24.8 64.0 91.9 6.1 13.5 29.2 47.1 7.1 24.4 55.9 87.5 5.7 14.4 32.7 59.0
cir2 asym 4.7 6.7 40.9 86.8 99.4 11.7 53.2 92.1 99.7 8.0 42.9 89.3 99.6 12.3 54.9 93.9 99.9

bs 4.9 9.2 48.8 90.5 99.6 10.3 48.2 90.4 99.6 10.6 49.1 92.0 99.8 10.3 50.1 92.0 99.8
cir6 asym 3.8 5.3 23.8 64.1 94.4 4.2 9.9 20.2 34.4 5.2 22.5 57.1 89.4 3.8 10.4 25.0 47.1

bs 5.2 7.1 27.4 67.3 95.0 6.2 13.3 24.7 40.1 6.9 26.0 60.4 90.7 5.4 14.1 30.4 52.8
cir10 asym 2.5 4.5 15.3 44.7 79.5 2.5 3.9 7.0 11.0 4.3 14.6 37.8 71.4 2.1 4.0 9.5 14.9

bs 4.8 6.8 19.0 49.0 82.1 5.1 8.4 14.0 20.2 6.6 17.9 42.3 74.8 4.8 9.1 17.3 27.4

n=98
bd49 asym 4.3 9.9 58.3 96.4 100.0 8.7 40.2 76.2 94.3 9.4 54.3 94.1 99.9 9.0 43.5 85.2 98.8

bs 5.0 10.9 61.2 96.9 100.0 8.9 39.2 74.8 93.7 10.8 57.3 94.7 99.9 9.2 42.7 84.2 98.8
rook asym 4.4 8.4 53.1 94.6 99.9 13.6 63.4 97.2 100.0 8.3 51.2 94.5 99.9 12.7 64.5 96.6 100.0

bs 4.5 10.7 58.6 95.9 100.0 11.3 58.5 96.4 100.0 10.5 56.9 95.9 99.9 10.7 59.3 95.9 100.0
queen asym 4.5 7.6 40.2 88.0 99.7 7.0 25.3 53.4 79.5 7.1 37.4 81.9 98.8 7.3 27.5 63.6 89.4

bs 5.1 9.2 43.4 89.4 99.7 7.7 25.5 53.8 79.3 8.5 40.3 83.3 99.0 7.7 27.8 62.8 89.2
cir2 asym 4.7 12.5 78.7 99.7 100.0 17.4 83.4 99.9 100.0 12.7 79.9 99.7 100.0 17.6 85.3 99.9 100.0

bs 4.8 15.5 81.6 99.8 100.0 15.1 81.0 99.8 100.0 15.2 82.5 99.8 100.0 15.6 82.6 99.9 100.0
cir6 asym 4.2 8.2 48.9 93.7 100.0 6.6 22.1 48.0 73.1 9.0 44.0 89.0 99.7 6.4 26.3 61.5 88.6

bs 4.7 9.2 50.7 93.8 100.0 7.5 24.0 49.7 74.9 10.1 45.8 89.5 99.7 7.4 28.3 63.8 89.7
cir10 asym 3.7 7.1 34.0 81.2 98.5 3.7 10.5 22.3 35.8 6.8 30.3 71.0 96.5 3.8 11.8 29.1 54.6

bs 5.1 8.4 36.1 82.3 98.6 5.8 14.3 28.3 43.6 8.1 32.3 72.3 96.8 5.7 16.3 36.7 61.9

n=147
bd49 asym 4.4 12.2 75.4 99.8 100.0 12.3 57.3 91.7 99.2 12.0 72.1 99.3 100.0 12.5 62.6 96.5 100.0

bs 4.7 13.4 76.7 99.8 100.0 11.7 56.5 91.2 99.2 13.5 73.7 99.2 100.0 11.9 61.2 96.0 99.9
rook asym 4.6 11.9 72.7 99.4 100.0 17.0 79.4 99.7 100.0 11.7 72.0 99.2 100.0 16.4 78.6 99.7 100.0

bs 4.5 14.5 76.6 99.5 100.0 14.7 76.2 99.5 100.0 14.4 75.5 99.5 100.0 14.0 75.7 99.5 100.0
queen asym 4.2 9.6 58.0 96.6 100.0 7.1 36.7 74.1 92.8 9.8 51.6 94.1 100.0 8.3 41.8 81.8 98.1

bs 4.6 10.7 60.2 96.7 100.0 7.7 36.3 73.6 92.3 10.9 53.8 94.4 100.0 8.3 41.4 81.0 97.9
cir2 asym 5.1 18.8 93.3 100.0 100.0 23.6 95.2 100.0 100.0 19.7 94.0 100.0 100.0 23.9 95.9 100.0 100.0

bs 5.2 21.6 94.4 100.0 100.0 21.7 94.0 100.0 100.0 22.7 94.8 100.0 100.0 21.9 95.2 100.0 100.0
cir6 asym 4.6 10.8 67.1 99.0 100.0 7.7 37.2 70.4 90.3 10.7 60.8 97.4 100.0 7.9 43.2 83.7 98.5

bs 5.1 12.1 68.0 99.0 100.0 8.4 38.2 70.9 90.5 11.7 61.7 97.4 100.0 8.6 44.3 83.8 98.5
cir10 asym 3.8 8.4 48.9 93.3 100.0 5.2 18.2 37.4 58.6 8.8 43.3 88.5 99.5 5.6 21.1 51.2 79.8

bs 4.9 9.2 49.6 93.4 100.0 6.7 21.5 42.1 63.0 9.8 44.0 88.7 99.6 7.2 24.4 55.7 82.8

n=196
bd49 asym 4.4 15.6 87.5 100.0 100.0 14.7 70.7 97.4 100.0 14.7 84.6 99.9 100.0 15.6 76.8 99.6 100.0

bs 4.8 17.1 87.8 100.0 100.0 14.2 69.7 97.3 100.0 16.3 85.4 99.9 100.0 15.0 75.4 99.4 100.0
rook asym 4.6 13.9 84.6 100.0 100.0 19.9 89.3 100.0 100.0 16.2 84.1 99.9 100.0 19.0 89.2 100.0 100.0

bs 4.7 16.2 86.4 100.0 100.0 17.0 87.2 99.9 100.0 18.5 85.9 99.9 100.0 17.0 87.4 100.0 100.0
queen asym 4.6 11.1 70.5 99.2 100.0 9.3 47.7 85.4 98.3 11.7 66.6 98.0 100.0 9.7 53.5 91.7 99.7

bs 4.9 12.2 71.6 99.4 100.0 9.8 47.0 85.0 97.9 12.6 68.1 98.2 100.0 10.1 52.6 91.5 99.7
cir2 asym 5.2 25.4 98.1 100.0 100.0 30.2 98.8 100.0 100.0 25.3 98.4 100.0 100.0 31.0 98.7 100.0 100.0

bs 5.4 27.8 98.5 100.0 100.0 27.6 98.3 100.0 100.0 27.6 98.7 100.0 100.0 28.3 98.5 100.0 100.0
cir6 asym 5.0 14.1 78.9 99.9 100.0 9.7 46.9 86.1 96.9 12.9 74.6 99.5 100.0 9.9 55.9 93.9 99.8

bs 5.4 14.8 79.3 99.9 100.0 10.0 48.1 86.1 97.1 13.4 75.3 99.5 100.0 10.4 55.9 93.5 99.8
cir10 asym 4.4 10.6 61.8 98.2 100.0 7.2 26.1 53.1 75.2 10.2 54.3 95.2 100.0 5.9 28.8 68.2 92.0

bs 4.9 10.9 62.5 98.1 100.0 8.5 29.1 56.6 77.2 10.8 55.2 95.2 100.0 7.4 31.8 71.2 93.3

“asym” and “bs” mean that the rejection probabilities reported are computed using the asymptotic and bootstrap

critical values respectively. The sign “%” is omitted. The first column shows the spatial weights matrices in

the DGP: “bd49” means a block diagonal matrix with each diagonal block being the continuity matrix for 49

neighborhoods in Columbus, OH; “rook” and “queen” mean the matrices generated according to the rook and

queen criteria respectively; “cir2”, “cir6” and “cir10” mean the “circular” world matrices with, respectively, 2, 6

and 10 nonzero elements in each row. 14



Table 2: Empirical size and power of the asymptotic and bootstrap tests with chi-square disturbances

size power (SAR model) power (SE model)

ρ = 0.0 0.1 0.3 0.5 0.7 −0.1 −0.3 −0.5 −0.7 0.1 0.3 0.5 0.7 −0.1 −0.3 −0.5 −0.7

n=49
bd49 asym 5.3 9.3 38.3 80.2 98.2 5.6 16.0 39.5 63.1 8.8 36.1 76.0 96.9 5.4 18.9 48.0 76.8

bs 5.0 6.9 31.6 75.2 97.5 6.7 19.9 44.2 66.8 7.0 29.9 69.6 95.2 6.6 23.2 53.2 79.6
rook asym 5.3 8.1 34.2 76.9 97.1 8.8 37.9 79.9 97.8 8.2 34.8 76.1 97.2 8.3 37.9 79.1 97.9

bs 5.0 6.9 30.6 73.7 96.3 8.5 37.1 78.2 97.4 6.9 31.7 73.3 96.7 8.4 37.0 77.9 97.7
queen asym 5.9 9.2 30.9 70.5 94.1 4.6 10.1 24.2 41.7 8.9 28.5 63.4 90.8 5.2 11.5 28.7 54.3

bs 5.9 7.1 24.7 63.4 92.1 5.8 14.6 30.2 48.2 6.4 22.5 56.7 87.8 6.3 16.1 35.8 61.0
cir2 asym 5.4 11.1 51.6 92.3 99.7 10.0 53.1 91.2 99.5 10.4 51.6 94.7 100.0 11.2 54.0 93.9 99.8

bs 4.9 9.0 46.5 90.5 99.5 10.4 53.5 90.4 99.4 8.6 46.7 93.0 100.0 11.9 53.9 93.5 99.8
cir6 asym 5.7 8.6 35.5 75.6 96.9 4.6 7.9 17.1 30.7 9.1 32.4 67.9 94.6 4.6 8.5 23.3 44.9

bs 5.1 6.8 28.7 70.0 95.5 6.3 13.5 26.4 40.4 6.7 25.4 61.0 92.2 6.1 14.2 33.6 56.3
cir10 asym 5.0 8.6 26.5 59.0 88.0 3.0 3.7 5.4 10.6 8.6 23.6 50.8 79.4 2.9 3.6 7.5 14.9

bs 4.7 6.9 20.4 51.4 83.8 4.4 8.4 14.3 21.8 6.6 17.0 42.2 73.9 5.1 8.7 17.7 30.1

n=98
bd49 asym 4.6 11.9 63.6 98.3 100.0 7.3 37.4 73.3 93.6 12.5 61.2 96.8 100.0 8.0 41.8 83.1 98.3

bs 4.7 9.7 57.4 97.5 100.0 9.0 42.3 76.8 94.4 10.1 55.2 95.4 99.9 10.1 47.1 86.0 98.6
rook asym 5.3 12.0 60.9 96.9 100.0 12.4 61.0 96.5 100.0 11.9 59.1 96.9 100.0 11.1 63.7 96.3 100.0

bs 5.0 11.0 57.5 96.4 100.0 13.1 61.2 96.4 99.9 10.6 56.0 96.1 100.0 11.8 64.1 96.4 100.0
queen asym 4.4 10.1 49.5 92.2 99.8 5.3 21.5 49.3 76.8 10.4 46.3 88.4 99.5 6.4 23.9 60.1 87.9

bs 4.6 8.2 44.0 90.2 99.7 7.3 27.6 55.6 80.6 8.7 40.8 84.8 99.3 8.4 30.0 65.5 90.4
cir2 asym 5.1 15.8 82.6 100.0 100.0 16.2 82.8 99.9 100.0 15.9 85.0 100.0 100.0 16.9 84.8 99.7 100.0

bs 5.1 13.7 79.5 99.8 100.0 17.7 83.4 99.8 100.0 13.8 81.5 99.9 100.0 18.4 85.4 99.8 100.0
cir6 asym 5.4 12.3 56.5 95.7 100.0 5.2 18.7 45.0 68.4 12.2 52.4 92.7 99.9 5.3 22.6 58.6 86.5

bs 5.1 9.8 50.1 94.6 99.9 7.4 25.7 54.1 74.9 9.5 45.2 90.2 99.8 7.7 30.6 67.5 90.4
cir10 asym 4.7 10.7 43.6 85.4 99.2 3.8 7.4 17.3 31.7 10.4 37.0 78.5 97.7 3.5 8.8 24.5 48.1

bs 5.3 8.2 36.1 81.6 99.0 6.5 14.7 28.9 45.7 8.3 30.6 73.7 96.8 6.2 17.3 39.0 64.2

n=147
bd49 asym 5.5 15.5 81.7 99.8 100.0 9.8 54.3 90.4 99.1 15.4 77.0 99.5 100.0 10.9 61.2 95.3 99.9

bs 5.3 13.2 78.1 99.7 100.0 12.1 58.6 91.5 99.3 12.8 72.5 99.4 100.0 13.0 65.6 96.2 100.0
rook asym 5.3 14.8 77.2 99.8 100.0 14.7 79.1 99.6 100.0 14.2 76.5 99.7 100.0 14.6 78.7 99.6 100.0

bs 5.1 13.0 74.7 99.7 100.0 15.6 79.3 99.6 100.0 12.7 74.2 99.7 100.0 15.4 79.0 99.5 100.0
queen asym 4.9 13.2 63.8 98.2 100.0 7.5 33.4 71.3 91.8 12.1 59.9 96.7 100.0 6.9 37.1 79.4 97.2

bs 4.9 10.7 58.0 97.7 100.0 9.4 39.5 75.7 93.4 9.9 54.5 95.3 99.9 9.3 43.0 83.2 97.9
cir2 asym 5.6 21.7 95.7 100.0 100.0 22.8 94.8 100.0 100.0 21.5 96.1 100.0 100.0 23.6 94.3 100.0 100.0

bs 5.6 19.8 94.6 100.0 100.0 24.7 95.1 100.0 100.0 18.8 94.8 100.0 100.0 25.5 94.7 100.0 100.0
cir6 asym 5.0 13.8 73.4 99.4 100.0 6.3 33.2 67.3 87.9 13.4 67.6 98.4 100.0 7.3 37.7 80.6 98.1

bs 5.0 11.3 68.2 99.1 100.0 9.1 40.4 73.5 91.2 11.0 62.1 97.7 100.0 9.8 45.7 85.1 98.9
cir10 asym 5.0 11.6 56.5 96.1 99.9 4.4 14.2 32.8 51.9 11.6 50.9 91.5 99.8 3.6 16.3 45.6 75.1

bs 5.3 9.0 50.0 94.2 99.9 6.7 23.2 44.3 63.5 9.8 44.4 89.2 99.7 5.9 24.8 57.9 84.4

n=196
bd49 asym 5.0 19.3 89.8 100.0 100.0 13.2 68.5 96.7 99.9 17.9 87.9 99.9 100.0 12.8 75.1 99.2 100.0

bs 5.2 16.2 87.3 100.0 100.0 15.6 71.5 97.3 99.9 15.1 84.8 99.9 100.0 15.5 77.7 99.3 100.0
rook asym 4.9 17.6 87.2 100.0 100.0 17.7 87.4 100.0 100.0 17.6 86.7 99.9 100.0 17.2 88.0 100.0 100.0

bs 4.9 16.1 85.4 99.9 100.0 19.1 87.6 100.0 100.0 16.4 85.0 99.9 100.0 17.8 88.1 100.0 100.0
queen asym 5.5 15.0 75.1 99.6 100.0 8.0 45.1 81.8 97.1 14.2 70.5 98.8 100.0 8.2 49.1 90.9 99.5

bs 5.3 12.7 70.7 99.3 100.0 10.6 50.8 84.7 97.5 11.9 66.1 98.4 100.0 10.5 54.3 92.7 99.7
cir2 asym 5.3 29.4 98.7 100.0 100.0 29.3 98.1 100.0 100.0 27.5 99.2 100.0 100.0 29.1 98.8 100.0 100.0

bs 5.3 26.1 98.4 100.0 100.0 31.2 98.2 100.0 100.0 24.5 98.9 100.0 100.0 30.8 98.8 100.0 100.0
cir6 asym 4.8 16.9 84.8 99.9 100.0 7.7 44.7 81.5 96.1 16.1 78.0 99.6 100.0 8.8 51.3 92.1 99.7

bs 5.0 13.7 81.0 99.9 100.0 10.7 51.3 85.1 97.0 13.2 73.1 99.5 100.0 11.8 57.9 93.9 99.7
cir10 asym 4.3 13.7 67.4 98.7 100.0 5.3 21.0 47.3 70.0 13.1 62.2 96.9 100.0 4.8 25.1 63.2 90.3

bs 4.6 10.1 61.6 98.2 100.0 8.7 29.5 57.5 77.9 10.5 56.2 95.3 100.0 7.6 34.6 72.8 93.9

“asym” and “bs” mean that the rejection probabilities reported are computed using the asymptotic and bootstrap

critical values respectively. The sign “%” is omitted. The first column shows the spatial weights matrices in

the DGP: “bd49” means a block diagonal matrix with each diagonal block being the continuity matrix for 49

neighborhoods in Columbus, OH; “rook” and “queen” mean the matrices generated according to the rook and

queen criteria respectively; “cir2”, “cir6” and “cir10” mean the “circular” world matrices with, respectively, 2, 6

and 10 nonzero elements in each row. 15



Table 1 reports Monte Carlo results for the case with normal disturbances. For n = 49, the asymptotic

tests, except the ones with “cir2” and “rook”, significantly under-reject the true null hypotheses. For the real

world matrix “bd49”, the size distortion is 0.009. Between “rook” and “queen”, the denser one, “queen”, has

a larger size distortion, being equal to 0.013. Similarly, among “cir2”, “cir6” and “cir10”, denser matrices

have larger size distortions. The size distortion of “cir10” is as high as 0.025. For all the matrices considered,

the empirical sizes of the bootstrap tests are all very close to the nominal 5%. For the empirical power, the

asymptotic and bootstrap tests both have higher powers as ρ moves away from 0. There are gaps between

the powers of the asymptotic and bootstrap tests, which are often large and can be larger than 10%. The

gaps for denser matrices are not necessarily larger. For example, for ρ = 0.3, the gap is 7.9% for “cir2”,

but only 3.7% for “cir10”. With larger sample sizes, the patterns of empirical sizes and powers remain

the same. The empirical sizes of the bootstrap tests are still close to the nominal size for different sample

sizes. When the sample sizes become larger, the size distortions of asymptotic tests become less severe, the

powers of asymptotic and bootstrap tests become higher, and the gaps between the powers of the asymptotic

and bootstrap tests become smaller. With a sample size of 196, the asymptotic tests almost have no size

distortion.

The Monte Carlo results for the case with chi-square disturbances are reported in Table 2. For n = 49,

the asymptotic tests generally over-reject the true null hypotheses, but the size distortions are not large,

with the largest one being 0.009. With sample sizes larger than 49, the asymptotic tests have very small

size distortions. The bootstrap tests have smaller size distortions than the asymptotic tests in almost all

cases. The patterns of the empirical powers are similar to the case with normal disturbances.

5. Conclusion

In this paper, we consider the use of the bootstrap in spatial econometric models, with a focus on Moran’s

I test. We demonstrate that the bootstrap for estimators and test statistics in spatial econometric models

can be studied based on LQ forms. We have established the uniform convergence of the CDF for an LQ

form to that of the standard normal random variable. Based on this result, we show that the bootstrap is

generally consistent for statistics that can be approximated by an LQ form. In particular, we show that the

bootstrap for Moran’s I is consistent. Furthermore, we establish the Edgeworth expansion for LQ forms

with normal disturbances and an asymptotic expansion for LQ forms with non-normal disturbances based

on martingales. These results are applied to show the second order correctness of the bootstrap for Moran’s

I. Our Monte Carlo results show that, in finite samples, the empirical size of the bootstrapped Moran’s I

test is usually very close to the nominal level of significance and the bootstrap test generally has smaller

size distortion than the asymptotic test.

The results in this paper can also be used to study the bootstrap for other statistics, e.g., the popular

16



spatial J-type tests. Some asymptotic chi-square tests in spatial econometrics, e.g., hypothesis tests with

multiple constraints, are constructed from vectors of LQ forms. The current uniform convergence result,

which is only about a single LQ form, does not cover vectors of LQ forms. It is of interest to establish the

uniform convergence result for vectors of LQ forms so that the bootstrap can be shown to be consistent

for asymptotic chi-square tests. It also remains to show high order expansions of a vector of LQ forms for

asymptotic refinements of the bootstrap.16

Appendix A. Lemmas

For generality, the following lemmas are proved for the popular SARAR model yn = λWnyn +Xnβ + un,

un = ρMnun + εn, where Wn and Mn are n × n spatial weights matrices which may or may not be different,

and εni’s in εn = (εn1, . . . , εnn)
′ are i.i.d. with mean zero, variance σ2

0 , third moment µ3 and finite fourth

moment µ4. Let θ = (λ, ρ, β′)′, Sn(λ) = In − λWn and Rn(ρ) = In − ρMn. The true parameter vector is

θ0. Denote Sn = Sn(λ0) and Rn = Rn(ρ0) for short. Assume that S−1n (λ) and R−1
n (ρ) are bounded in both

row and column sum norms uniformly in their compact parameter spaces, Wn and Mn are bounded in both

row and column sum norms, and the matrix Xn satisfies regularity conditions as in the main text. Let

ε̂n = Rn(ρ̂n)[Sn(λ̂n)yn −Xnβ̂n] with θ̂n being n1/2-consistent, i.e., n1/2(θ̂n − θ0) = OP (1).17 The ε∗n, y∗n and

θ̂∗n are derived by the residual bootstrap or parametric bootstrap when εn ∼ N(0, σ2
0In), as described in

Section 2. Let ∣∣ ⋅ ∣∣ be the Euclidean vector norm.

Lemma 1. Let Pln = [pln,ij] be n × n matrices which are bounded in row sum norms, for l = 1, . . . , s. If

E ∣εnj ∣
s <∞, then n−1∑

n
i=1∏

s
l=1∑

n
j=1 ∣pln,ijεnj ∣ = OP (1).

Proof. For s = 1, the result is immediate. For s > 1, there exists a finite r such that 1
r
+ 1
s
= 1. Hölder’s

inequality implies that

n

∑
j=1

∣pln,ij ∣∣εnj ∣ ≤
n

∑
j=1

∣pln,ij ∣
1
r ∣pln,ij ∣

1
s ∣εnj ∣ ≤ [

n

∑
j=1

(∣pln,ij ∣
1
r )
r
]

1
r [

n

∑
j=1

(∣pln,ij ∣
1
s ∣εnj ∣)

s
]

1
s

≤ c
1
r [

n

∑
j=1

∣pln,ij ∣∣εnj ∣
s
]

1
s ≤ c

1
r [

n

∑
j=1

(
s

∑
l=1

∣pln,ij ∣)∣εnj ∣
s
]

1
s ,

where c = supl=1,⋯,s ∣∣Pln∣∣∞. It follows that

s

∏
l=1

n

∑
j=1

∣pln,ij ∣∣εnj ∣ ≤ c
s
r [

n

∑
j=1

(
s

∑
l=1

∣pln,ij ∣)∣εnj ∣
s
].

16For a vector of LQ forms with non-normal disturbances, an asymptotic expansion based on martingales can be established

by using the results in Mykland (1995).
17For some other spatial econometric models, e.g., the SMA or spatial Durbin model, the results in these lemmas can be

similarly proved.
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Hence,

E(
s

∏
l=1

n

∑
j=1

∣pln,ij ∣ ⋅ ∣εnj ∣) ≤ c
s
r (

s

∑
l=1

n

∑
j=1

∣pln,ij ∣)E ∣εnj ∣
s
≤ sc1+

s
r E ∣εnj ∣

s
= scsE ∣εnj ∣

s
= O(1).

Then the result of stochastic boundedness follows from Markov’s inequality.

Lemma 2. For any integer r, if E ∣εni∣
r < ∞, then E∗ ε∗rni = E εrni + oP (1), n−1∑

n
i=1 ε̂

r
ni = E εrni + oP (1),

E∗
∣ε∗ni∣

r = E ∣εni∣
r +oP (1) and n−1∑

n
i=1 ∣ε̂ni∣

r = E ∣εni∣
r +oP (1). If E ε2rni <∞, then n1/2[E∗ ε∗rni −E εrni] = OP (1)

and n1/2[n−1∑
n
i=1 ε̂

r
ni −E εrni] = OP (1).

Proof. We first consider the residual bootstrap. Let Jn = In −
1
n
lnl

′
n. As yn = S

−1
n (Xnβ0 +R

−1
n εn),

ε̃n = Jnε̂n

= Jn(Rn + (ρ0 − ρ̂n)Mn)(Snyn −Xnβ0 + (λ0 − λ̂n)Wnyn +Xn(β0 − β̂n))

= εn −
l′nεn
n

ln + (λ0 − λ̂n)(JnRn + (ρ0 − ρ̂n)JnMn)WnS
−1
n Xnβ0

+ (JnRnXn + (ρ0 − ρ̂n)JnMnXn)(β0 − β̂n)

+ (λ0 − λ̂n)(JnRn + (ρ0 − ρ̂n)JnMn)WnS
−1
n R−1

n εn + (ρ0 − ρ̂n)JnMnR
−1
n εn.

(A.1)

Write ε̃n = εn +∑
r
j=1 ζ1n,jpnj +∑

s
j=1 ζ2n,jQnjεn, where pnj = [pnj,i] is an n-dimensional vector with bounded

constant elements, Qnj = [qnj,il] is an n × n matrix with bounded row and column sum norms, and ζ1n,j

and ζ2n,j ’s are equal to l′nεn/n, λ0 − λ̂n, ρ0 − ρ̂n, elements of β0 − β̂n or their products. Then ζ1n,j =

OP (n−1/2) and ζ2n,j = OP (n−1/2). The ε̃rni can be expanded by the multinomial theorem, which states

that (x1 + ⋅ ⋅ ⋅ + xm)r = ∑k1,...,km (
r

k1,...,km
)xk11 . . . xkmm , where (

r
k1,...,km

) is a multinomial coefficient and the

summation is taken over all sequences of nonnegative integer indices k1 through km such that their sum

is r. Then we have an expansion form for n−1∑
n
i=1 ε̃

r
ni − n

−1
∑
n
i=1 ε

r
ni, where each term in the expansion

has the product form T1nT2n with T1n being products of ζ1n,j and ζ2n,j ’s and T2n not involving ζ1n,j

and ζ2n,j ’s. When E ∣εni∣
r < ∞, T2n is either bounded or randomly bounded by Lemma 1. It follows

that n1/2(n−1∑
n
i=1 ε̃

r
ni − n

−1
∑
n
i=1 ε

r
ni) = OP (1). By the law of large numbers, n−1∑

n
i=1 ε

r
ni − E εrni = oP (1).

Then E∗ ε∗rni = E εrni + oP (1) for the residual bootstrap, when E ∣εni∣
r < ∞. By Chebyshev’s inequality,

P(∣n1/2(n−1∑
n
i=1 ε

r
ni − E εrni)∣ > η) = P(∣n−1/2∑

n
i=1(ε

r
ni − E εrni)∣ > η) ≤ η

−2 E[(εrni − E εrni)
2] = O(η−2) for any

η > 0 when E ε2rni < ∞. Thus, n1/2(n−1∑
n
i=1 ε

r
ni − E εrni) = OP (1). Then n1/2[E∗ ε∗rni − E εrni] = OP (1) for the

residual bootstrap, when E ε2rni <∞.

For the parametric bootstrap, E∗ ε∗rni = 0 when r is odd and E∗ ε∗rni = (n−1ε̂′nε̂n)
r/2(r − 1)!! when r is even,

where (r−1)!! denotes the double factorial of r−1. By a similar argument as above, n−1ε̂′nε̂n = σ
2
0+OP (n−1/2)

when E ε4ni = 3(E ε2ni)
2 <∞. Then E∗ ε∗rni = E εrni+OP (n−1/2) for the parametric bootstrap as long as E ε2ni <∞.

Other results are similarly derived.

Lemma 3. Let Pln = [pln,ij] be n × n matrices with bounded row sum norms for l = 1, . . . , s, then

P∗
(n−1∑

n
i=1∏

s
k=1∑

n
j=1 ∣pkn,ijε

∗
nj ∣ > η) = OP (1) for η > 0, if E ∣εni∣

s <∞.
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Proof. The proof is similar to that for Lemma 1 except for the application of Lemma 2.

Lemma 4. For η > 0 and an integer r, P∗
(∣n−1∑

n
i=1 ε̂

∗r
ni−E∗ ε∗rni ∣ > η) = oP (1) if E ∣εni∣

r <∞ and P∗
(∣∣θ̂∗n−θ̂n∣∣ >

κ) = oP (1) for κ > 0; and P∗
(na∣n−1∑

n
i=1 ε̂

∗r
ni − E∗ ε∗rni ∣ > η) = oP (1) for 0 ≤ a < 1/2 if E ∣εni∣

2r < ∞ and

P∗
(na∣∣θ̂∗n − θ̂n∣∣ > κ) = oP (1) for κ > 0.

Proof. As y∗n = S
−1
n (λ̂n)(Xnβ̂n +R

−1
n (ρ̂n)ε

∗
n),

ε̂∗n = (Rn(ρ̂n) + (ρ̂n − ρ̂
∗
n)Mn)(Sn(λ̂n)y

∗
n −Xnβ̂n + (λ̂n − λ̂

∗
n)Wny

∗
n +Xn(β̂n − β̂

∗
n))

= ε∗n + (λ̂n − λ̂
∗
n)(Rn(ρ̂n) + (ρ̂n − ρ̂

∗
n)Mn)WnS

−1
n (λ̂n)Xnβ̂n

+ (Rn(ρ̂n)Xn + (ρ̂n − ρ̂
∗
n)MnXn)(β̂n − β̂

∗
n)

+ (λ̂n − λ̂
∗
n)(Rn(ρ̂n) + (ρ̂n − ρ̂

∗
n)Mn)WnS

−1
n (λ̂n)R

−1
n (ρ̂n)ε

∗
n + (ρ̂n − ρ̂

∗
n)MnR

−1
n (ρ̂n)ε

∗
n.

Write ε̂∗n = ε
∗
n +∑

r
j=1 ζ1n,jpnj +∑

s
j=1 ζ2n,jQnjε

∗
n, where pnj = [pnj,i] is an n-dimensional vector with bounded

elements (or randomly bounded if β̂n is involved), Qnj = [qnj,il] is an n × n matrix with bounded row and

column sum norms, and ζ1n,j and ζ2n,j ’s are equal to λ̂n − λ̂
∗
n, ρ̂n − ρ̂

∗
n, elements of β̂n − β̂

∗
n or their products.

Now the argument is similar to that for Lemma 2 except for the application of Lemma 3.

Appendix B. Proofs for Results in Section 2

Proof of Theorem 1. As in Kelejian and Prucha (2001), write cn as cn = ∑
n
i=1 cni with

cni = n
−1/2

(an,ii(ε
2
ni − σ

2
0) + 2εni

i−1

∑
j=1

an,ijεnj + bniεni). (B.1)

Obviously, E ∣cni∣ < ∞. Consider the σ-fields Fn0 = {∅,Ω}, Fni = σ(εn1, . . . , εni), 1 ≤ i ≤ n, where Ω is the

sample space. Then {cni,Fni,1 ≤ i ≤ n,n ≥ 1} forms a martingale difference array and σ2
cn = ∑

n
i=1 E(c2ni),

where

E(c2ni) = n
−1

(a2n,ii(µ4 − σ
4
0) + 4σ4

0

i−1

∑
j=1

a2n,ij + b
2
niσ

2
0 + 2µ3an,iibni).

By a theorem in Heyde and Brown (1970), if there is a constant δ1 with 0 < δ1 ≤ 1 such that

E ∣cni∣
2+2δ1 <∞, (B.2)

then there exists a finite constant K depending only on δ1, such that18

sup
x

∣P(cn ≤ σcnx) −Φ(x)∣ ≤K{σ−2−2δ1cn (
n

∑
i=1

E ∣cni∣
2+2δ1 +E∣

n

∑
i=1

E(c2ni∣Fn,i−1) − σ
2
cn ∣

1+δ1
)}

1/(3+2δ1)

. (B.3)

18Note that the result in Heyde and Brown (1970) is on a fixed square integrable martingale difference sequence with 0 < δ1 ≤ 1,

but the result also applies to a triangular array of martingale differences with δ1 > 1 (Haeusler, 1988).
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Thus if

lim
n→∞

σ−2−2δ1cn

n

∑
i=1

E ∣cni∣
2+2δ1 = 0, (B.4)

and

lim
n→∞

E∣(σ−2cn

n

∑
i=1

E(c2ni∣Fn,i−1)) − 1∣
1+δ1

= 0, (B.5)

then P(cn ≤ σcnx) converges uniformly to Φ(x) and a bound on the rate of convergence is given by (B.3).

Now we check that (B.2), (B.4) and (B.5) hold. Let 2 ≤ q ≤ 2(1 + δ) and 1/p + 1/q = 1. By the triangle and

Hölder’s inequalities,

n

∑
i=1

E ∣cni∣
q
≤ n−q/2 E

n

∑
i=1

(∣an,ii∣
1/p

∣an,ii∣
1/q

∣ε2ni − σ
2
0 ∣ +

i−1

∑
j=1

∣an,ij ∣
1/p2∣an,ij ∣

1/q
∣εni∣∣εnj ∣ + ∣bni∣∣εni∣)

q

≤ n−q/2 E
n

∑
i=1

(
i

∑
j=1

∣an,ij ∣ + 1)
q/p

(∣an,ii∣∣ε
2
ni − σ

2
0 ∣
q
+
i−1

∑
j=1

2q ∣an,ij ∣∣εni∣
q
∣εnj ∣

q
+ ∣bni∣

q
∣εni∣

q
)

≤ n(2−q)/2(Ka + 1)q/p(KaE ∣ε2ni − σ
2
0 ∣
q
+ 2qKa(E ∣εni∣
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Thus (B.2) holds. As σ2
cn = ∑

n
i=1 E c2ni, (B.6) implies that σ2

cn is bounded. Then (B.4) holds by Assumption 3.
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where we have used the Cauchy-Schwarz inequality to derive (∑
n
i=j+1(µ3an,iian,ij+σ

2
0bnian,ij))

2
≤ ∑

n
i=j+1(∣µ

2
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σ4
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4
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2
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Using (B.3), (B.6) with q = 2 + 2δ1 and (B.7), we have
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i.e., (6) holds. Similarly, (7) holds. Since

P(cn/σcn + dn ≤ x) −Φ(x) ≤ P(cn/σcn + dn ≤ x, ∣dn∣ ≤ τ) −Φ(x) +P(∣dn∣ > τ)

≤ [P(cn/σcn ≤ x + τ) −Φ(x + τ)] + [Φ(x + τ) −Φ(x)] +P(∣dn∣ > τ),

and similarly because cn/σcn ≤ x − τ and ∣dn∣ ≤ τ imply cn/σcn + dn ≤ x,

P (cn/σcn + dn ≤ x) −Φ(x) ≥ [P(cn/σcn ≤ x − τ) −Φ(x − τ)] − [Φ(x) −Φ(x − τ)] −P(∣dn∣ > τ),
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i.e., (8) holds. Similarly, (9) holds.

Proof of Proposition 1. We first show the result for In in (2) with normal disturbances. As In only has unit

asymptotic variance but not unit variance for finite samples, it is convenient to use (11) to prove the result.

Note that as the variance of ε′nHnMnHnεn is σ4
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and
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By Lemma A.9 in Lee (2004b) and Lemma A.3 in Lin and Lee (2010), tr(MnHn) = tr(Mn) +O(1) = O(1),
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0 tr(MnHn)] = OP (1), n−1/2[ε′nHnεn−(n−kx)σ
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2] + o(1) = O(1) is bounded away from zero by Assumption I4, then dn =

OP (n−1/2). Note that in (11), rn = O(n−δ1/(3+2δ1)), and r∗n = OP (n−δ1/(3+2δ1)) by Lemma 2. As en = e∗n, it

remains to show that P∗
(∣d∗n∣ > τ) = oP (1) for τ > 0. For large enough n,
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and
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Appendix C. Proofs for Results in Subsection 3.1

Proof of Theorem 2. The characteristic function of cn/σcn is
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where ck1, . . . , ck4 are constants. Let ιn1, . . . , ιnn be An’s eigenvalues, which are real as An is symmetric,

and ιn = max{∣ιn1∣, . . . , ∣ιnn∣}. The ιn is bounded as An is bounded in both row and column sum norms.
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We first establish a one-term Edgeworth expansion for P(cn/σcn ≤ x) separately and then consider high

order expansions. Let γn(t) = (1 − iκnt
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where Φ(3)(x) = (x2 − 1)Φ(1)(x) and
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0)

−n/2∣Bn(t)∣
−1/2∣ = ∏

n
j=1(1 +

4t2σ4
0ι

2
nj

nσ2
cn

)
−1/4

, and the real part of

[− t2

2nσ2
cn

b′nB
−1
n (t)bn −

itσ2
0√

nσcn
tr(An)] is −

t2σ2
0

2
b′nPnDiag{(nσ2

cn + 4σ4
0t

2ι2n1)
−1, . . . , (nσ2

cn + 4σ4
0t

2ι2nn)
−1}P ′

nbn,

where Pn is the orthonormal matrix of eigenvectors of An and Diag(an) denotes a diagonal matrix with the

diagonal elements being those of the vector an. Hence

∣ϕn(t)∣ ≤ exp(−
σ2
0t

2b′nbn
2nσ2

cn + 8ι2nσ
4
0t

2
)
n

∏
j=1

(1 +
4t2σ4

0ι
2
nj

nσ2
cn

)
−1/4

.

When ∣t∣ >
√
2nσcn

8ιnσ2
0

,

∣ϕn(t)∣ < exp(−
b′nbn

72ι2nσ
2
0

−
1

4

n

∑
j=1

ln((1 +
ι2nj

8ι2n
))

≤ exp(−
b′nbn

72ι2nσ
2
0

−
1

32ι2n

n

∑
j=1

ι2nj +
1

512ι4n

n

∑
j=1

ι4nj)

≤ exp(−
b′nbn

72ι2nσ
2
0

−
15

512ι2n

n

∑
j=1

ι2nj)

≤ exp(−
nσ2

cn

72ι2nσ
4
0

),

(C.5)

where the second inequality follows by ln(1 + x) ≥ x − x2

2
for x ≥ 019. In (C.3), let T = nσ2

cn . By (C.4), the

contribution of the integral in (C.3) when ∣t∣ ≤
√
2nσcn

8ιnσ2
0

is O(n−1). The contribution when
√
2nσcn

8ιnσ2
0

< ∣t∣ ≤ T

tends to zero more rapidly than any power of n−1 by ∣ϕn(t)− γn(t)∣/∣t∣ ≤ (∣ϕn(t)∣+ ∣γn(t)∣)/∣t∣, where ∣ϕn(t)∣

satisfies (C.5) and ∣γn(t)∣/∣t∣ = exp(− 1
2
t2)(1 + κ2nt

6)1/2/∣t∣ < exp(−
nσ2

cn

64ι2nσ
4
0
)(1 + κ2nn

6σ12
cn)

1/2/(

√
2nσcn

8ιnσ2
0

). The

second term on the r.h.s. of (C.3) has the order O(n−1). Therefore, supx∈R ∣P(cn/σcn ≤ x) − (Φ(x) −

κnΦ(3)(x))∣ = O(n−1). Since we are considering a parametric bootstrap where elements of ε∗n are drawn

19This inequality holds because ln(1 + x) − x + x2/2 is increasing for x > −1 and it takes the value 0 at x = 0.
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from the normal distribution with mean zero and variance n−1ε̂′nε̂n, (13) holds by a similar argument and

Lemma 2.

To establish high order expansions, use the Taylor approximation for gn(t) up to and including the

term of degree r. Denote this approximation by t3τnr(t) = ∑
r
k=3

g(k)n (0)

k!
tk, where τnr(t) is a polynomial of

degree r − 3. Let pn(t) = ∑
r−2
k=1

1
k!
[(−it)3τnr(−it)]

k be a polynomial with coefficients pn1, . . . , pnm, where

m = r(r − 2). Note that pn1, . . . , pnm are real by (C.1). Let H1(t), . . . ,Hm(t) be Hermite polynomials, then

ωn(t) = Φ(1)(t)(1 +∑
m
k=1 pnkHk(t)) has the Fourier transform exp(−t2/2)(1 + pn(it)). For all T > 0,

sup
x∈R

∣P(cn/σcn ≤ x) − ∫
x

−∞
ωn(t)dt∣ ≤

1

π
∫

T

−T
∣
ϕn(t) − exp(−t2/2)(1 + pn(it))

t
∣dt +

24 supx ∣ωn(x)∣

πT
. (C.6)

Using the inequality that ∣eα − 1 −∑
r−2
k=1 β

k/k!∣ = ∣(eα − eβ) + (eβ − 1 −∑
r−2
k=1 β

k/k!)∣ ≤ exp(max{∣α∣, ∣β∣})(∣α −

β∣ + 1
(r−1)!

∣β∣r−1), which is (2.17) on p. 535 of Feller (1970), we have

∣ϕn(t) − exp(−t2/2)(1 + pn(it))∣

= ∣exp(−t2/2)(exp(gn(t)) − 1 − pn(it))∣

≤ exp(−t2/2 +max{∣gn(t)∣, ∣t
3τnr(t)∣})(∣gn(t) − t

3τnr(t)∣ +
1

(r − 1)!
∣t3τnr(t)∣

r−1).

By (C.2), ∣gn(t)− t
3τnr(t)∣ ≤

cr+1,5(ιnσ2
0)

r−1

n(r−1)/2σr−1
cn
(r+1)!

∣t∣r+1 ≤ t2/8 and ∣t3τnr(t)∣ ≤ t
2/8 when t ≤ cn1/2 for some proper

constant c. Then when t ≤ cn1/2, we have ∣gn(t)∣ ≤ t
2/4 and

∣ϕn(t) − exp(−t2/2)(1 + pn(it))∣ ≤ n
−(r−1)/2 exp(−t2/4)(

cr+1,5(ιnσ
2
0)
r−1

σr−1cn (r + 1)!
∣t∣r+1 +

1

(r − 1)!
∣n1/2t3τnr(t)∣

r−1
),

where ∣n
1
2 t3τnr(t)∣ ≤ ∑

r
k=3

ck5(ιnσ
2
0)

k−2

n(k−3)/2σk−2
cn

∣t∣k

k!
. Now let T = n(r−1)/2, then the contribution of the integral on

the r.h.s. of (C.6) when t ≤ cn1/2 is O(n−(r−1)/2), and the contribution of the integral when t > cn1/2 tends

to zero faster than any power of n−1 similar to the above. In addition, the second term on the r.h.s. of

(C.6) has the order O(n−(r−1)/2). Hence, supx∈R ∣P(cn/σcn ≤ x) − ∫
x
−∞

ωn(t)dt∣ = O(n−(r−1)/2). Note that

∫
x
−∞

ωn(t)dt = Φ(x) − pn1Φ(1)(x) −Φ(1)(x)∑
m
k=2 pnkHk−1(x), which is a polynomial in n−1/2 with bounded

coefficients for fixed x, by (C.2). Rearranging it according to ascending powers of n−1/2 and dropping the

terms involving powers n−k/2 with k > r − 1 yields (14). Eq. (15) follows similarly.

Proof of Proposition 2. LetAn = [HnMnHn−n
−1xHn tr1/2(M2

n+M
′
nMn)], σ

2
an = n−1 E[ε′nAnεn−σ

2
0 tr(An)]

2 =

2n−1σ4
0 tr(A2

n), zn = −σ
2
0n

−1/2σ−1an tr(An) = −2−1/2 tr(An) tr−1/2(A2
n) and

κn = 4σ6
0n

−3/2σ−3an tr(A3
n)/3 = 4[2 tr(A2

n)]
−3/2 tr(A3

n)/3.

Then

P(In ≤ x) = P(ε′nAnεn ≤ 0)

= P(n−1/2σ−1an[ε
′
nAnεn − σ

2
0 tr(An)] ≤ zn)

= Φ(zn) + κn(1 − z
2
n)Φ

(1)
(zn) +O(n−1),
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by Theorem 2. Similarly, as zn and κn do not involve any population parameter, neither do the corresponding

bootstrap versions z∗n and κ∗n. Thus z∗n = zn and κ∗n = κn, and

P∗
(I∗n ≤ x) = Φ(zn) + κn(1 − z

2
n)Φ

(1)
(zn) +OP (n−1).

Then P∗
(I∗n ≤ x) −P(In ≤ x) = OP (n−1).

Appendix D. Proofs for Results in Subsection 3.2

The following theorem from Mykland (1993) gives an asymptotic expansion for martingales. We shall

use it to prove Theorem 3 and Proposition 3.

Theorem A. Consider a triangular array of normalized martingales cTn/σ̂cTn
= ∑

Tn

i=1 cni/σ̂cTn
for n = 1, . . . ,

where σ̂cTn
is a normalizing factor, which can be stochastic, and cni’s are martingale differences with the

filtration Fni. Suppose that the following conditions are satisfied:

(i) (Integrability condition for the fourth-order variation.) For nonrandom sequences {σ2
cTn

} and {r2n}

with rn = o(1), we have
Tn

∑
i=1

E(c4ni) = O(σ4
cTn

r2n). (D.1)

(ii) (Integrability conditions for the square variation.) There are constants b2, k and k̄ so that 0 ≤ k < b2 <

k̄ ≤∞, and, for zTn being either ∑
Tn

i=1 c
2
ni or ∑

Tn

i=1 E(c2ni∣Fn,i−1),

r−1n (σ−2cTn
zTn − b

2
)1(k ≤ σ−2cTn

zTn ≤ k̄) is uniformly integrable, (D.2)

with P(k ≤ σ−2cTn
zTn ≤ k̄) = 1 − o(rn).20

(iii) (Integrability conditions for σ̂2
cTn

.) There are measurable sets Qn and constants b2∗ and δ > 0 so that

P(Qn) = 1 − o(rn) and

sup
n

E(r−1n ∣σ−2cTn
σ̂2
cTn

− b2∗∣)
1+δ1(Qn) <∞. (D.3)

(iv) (The central limit condition.) There are Borel-measurable functions ψo, ψp and ψ∗, so that, whenever

(b−1
cTn

σcTn

, r−1n (
1

σ2
cTn

Tn

∑
i=1

c2ni−b
2
), r−1n (

1

σ2
cTn

Tn

∑
i=1

E(c2ni∣Fn,i−1)−b
2), r−1n (

σ̂2
cTn

σ2
cTn

−b2∗))
d
Ð→ (Z, ξo, ξp, ξ∗), (D.4)

as n → ∞ through a subset of the integers, then E(ξo∣Z) = b2ψo(Z) a.s., E(ξp∣Z) = b2ψp(Z) a.s. and

E(ξ∗∣Z) = b2∗ψ∗(Z) a.s..

20With (D.1), the condition on ∑
Tn
i=1 c

2
ni is equivalent to that on ∑

Tn
i=1 E(c2ni∣Fn,i−1) (Mykland, 1993).
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Then,

∫

∞

−∞
h(x)dFn(x) = ∫

∞

−∞
h(x)dΦ(β−1x) +

1

2
rnE[β2ψ(x)h(2)(βZ) − ψ∗(Z)βZh(1)(βZ)] + o(rn), (D.5)

where Fn(x) = P(σ̂−1cTn
cTn ≤ x∣σ̂cTn

> 0), β = bb−1∗ and ψ = 1
3
ψo +

2
3
ψp, uniformly on the set ` of functions

h which are twice differentiable, with h, h(1) and h(2) uniformly bounded, and with {h(2), h ∈ `} being

equicontinuous a.e. Lebesgue.

Note that Z is standard normal, because the conditions in the theorem imply those for the martingale

central limit theorem.21 Subject to some minimum niceness on the part of ψ and ψ∗, the second term on

the r.h.s. of (D.5) can be shown via integration by parts to equal

1

2
rn ∫

∞

−∞
h(x)d[(ψ(1)(β−1x) − ψ(β−1x)β−1x + ψ∗(β

−1x)β−1x)Φ(1)(β−1x)]. (D.6)

Mykland (1993) introduces the notion of order o2(rn) to denote the kind of convergence in (D.5), stating

an expansion in a more standard way as

Fn(x) = Φ(β−1x) +
1

2
rn(ψ

(1)
(β−1x) − ψ(β−1x)β−1x + ψ∗(β

−1x)β−1x)Φ(1)(β−1x) + o2(rn). (D.7)

Proof of Theorem 3. We shall first establish the asymptotic expansion for Fn(x) and then show that a

similar expansion for F ∗
n(x) exists.

For (17) and (19), using the same σ-fields and decomposition of cn as a sum of martingale differences in

the proof of Theorem 1, we shall show that the conditions in Theorem A are met with Tn = n, σ̂cTn
= σcn and

rn = n−1/2. By (B.6), ∑
n
i=1 E(c4ni/σ

4
cn) = O(n−1). By (B.7), E∣n1/2[(σ−2cn ∑

n
i=1 E(c2ni∣Fn,i−1)) − 1]∣

2
= O(1).

Then the integrability conditions for the fourth-order and square variations are satisfied. As cn/σcn has

constant variance 1, it remains to check the central limit condition. We shall show that

(cn/σcn , n
1/2σ−2cn

n

∑
i=1

(c2ni −E(c2ni∣Fn,i−1)), n
1/2σ−2cn

n

∑
i=1

(E(c2ni∣Fn,i−1) −E(c2ni))) (D.8)

is asymptotically trivariate normal. Note that each term in (D.8) is a martingale. Under Assumptions 1′, 2′

and 3, the LQ form cn/σcn is asymptotically normal by Theorem 1 in Kelejian and Prucha (2001). Explicitly,

this result follows by Corollary 3.1 in Hall and Heyde (1980), after proving that σ−qcn ∑
n
i=1 E ∣cni∣

q = o(1) for

some q > 2 and σ−2cn ∑
n
i=1[E(c2ni∣Fn,i−1) − E(c2ni)] = o(1). The asymptotic normality of the second term in

(D.8) can be analyzed by the same argument and that of the last term by writing it as an LQ form. The

joint asymptotic normality will follow by the Cramér-Wold device with similar arguments but applied to

the combined terms.

Note that

n1/2σ−2cn

n

∑
i=1

(E(c2ni∣Fn,i−1) −E(c2ni)) = 4σ−2cnn
−1/2[σ2

0

n−1

∑
j=1

n−1

∑
k=1

[εnjεnk −E(εnjεnk)]
n

∑
i=max{j,k}+1

an,ijan,ik

21See, e.g., Theorem 3.2 and Corrollary 3.1 on p. 58 of Hall and Heyde (1980).
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+
n−1

∑
j=1

εnj
n

∑
i=j+1

an,ij(µ3an,ii + σ
2
0bni)],

which is an LQ form. The involved matrix in this LQ form is bounded in both row and column sum norms,

since the matrix is symmetric and ∑
n−1
j=1 ∣∑

n
i=max{j,k}+1 an,ijan,ik ∣ ≤ ∑

n
i=k+1 ∣an,ik ∣∑

n−1
j=1 ∣an,ij ∣ <∞. In addition,

for q = 2 + δ > 2 and 1/p + 1/q = 1, by the Ḧolder and cr inequalities,

1

n − 1

n−1

∑
j=1

∣
n

∑
i=j+1

an,ij(µ3an,ii + σ
2
0bni)∣

q

≤
1

n − 1

n−1

∑
j=1

∣
n

∑
i=j+1

∣an,ij ∣
1/p

∣an,ij ∣
1/q

(∣µ3an,ii∣ + σ
2
0 ∣bni∣)∣

q

≤
1

n − 1

n−1

∑
j=1

(
n

∑
i=j+1

∣an,ij ∣)
q/p

n

∑
i=j+1

2q−1∣an,ij ∣(∣µ3an,ii∣
q
+ σ2q

0 ∣bni∣
q
)

≤
c

n − 1

n−1

∑
j=1

n

∑
i=j+1

∣an,ij ∣(∣µ3an,ii∣
q
+ σ2q

0 ∣bni∣
q
) <∞,

where c is a constant. Thus n1/2(σ−2cn ∑
n
i=1 E(c2ni∣Fn,i−1) − 1) is asymptotically normal.

For the second term in (D.8), let

zni = n
1/2(c2ni −E(c2ni∣Fn,i−1))

= n−1/2(a2n,ii(ε
4
ni − µ4) + 2an,iibni(ε

3
ni − µ3) + (b2ni − 2σ2

0a
2
n,ii)(ε

2
ni − σ

2
0) − 2σ2

0an,iibniεni

+ 4[an,ii(ε
3
ni − µ3) + bni(ε

2
ni − σ

2
0) − σ

2
0an,iiεni]

i−1

∑
j=1

an,ijεnj + 4(ε2ni − σ
2
0)(

i−1

∑
j=1

an,ijεnj)
2
).

As (∑
i−1
j=1 an,ijεnj)

2 = ∑
i−1
j=1 a

2
n,ijε

2
nj + 2∑

i−1
j=1∑

j−1
k=1 an,ijan,ikεnjεnk, for some q > 2 and 1/p + 1/q = 1,

∣zni∣
q
≤ n−q/2[∣an,ii∣

2p
+ ∣2an,ii∣

p
+ 1 + ∣2σ2

0a
2
n,ii∣

p
+ ∣2σ2

0an,ii∣
p
+ 4p(∣an,ii∣

p
+ 1 + σ2p

0 ∣an,ii∣
p
)
i−1

∑
j=1

∣an,ij ∣

+ 4p(
i−1

∑
j=1

∣an,ij ∣
p+1

+ 2p
i−1

∑
j=1

j−1

∑
k=1

∣an,ij ∣∣an,ik ∣)]
q/p

[∣ε4ni − µ4∣
q
+ ∣bni∣

q
∣ε3ni − µ3∣

q

+ (∣bni∣
2q
+ 1)∣ε2ni − σ

2
0 ∣
q
+ ∣bniεni∣

q
+ [∣ε3ni − µ3∣

q
+ ∣bni∣

q
∣ε2ni − σ

2
0 ∣
q
+ ∣εni∣

q
]
i−1

∑
j=1

∣an,ij ∣∣εnj ∣
q

+ ∣ε2ni − σ
2
0 ∣
q
(
i−1

∑
j=1

∣an,ij ∣∣εnj ∣
2q
+
i−1

∑
j=1

j−1

∑
k=1

∣an,ij ∣∣an,ik ∣∣εnj ∣
q
∣εnk ∣

q
)].

Then σ−2qcn ∑
n
i=1 E[E(∣zni∣

q ∣Fn,i−1)] = o(1). Next we show that ∑
n
i=1(E(z2ni∣Fn,i−1) − E(z2ni)) = oP (1). Let

e1n,i = a
2
n,ii(ε

4
ni−µ4)+2an,iibn,ii(ε

3
ni−µ3)+(b2ni−2σ2

0a
2
n,ii)(ε

2
ni−σ

2
0)−2σ2

0an,iibniεni, e2n,i = 4[an,ii(ε
3
ni−µ3)+

bn,ii(ε
2
ni − σ

2
0) − σ

2
0an,iiεni], e3n,i = 4(ε2ni − σ

2
0) and e4n,i = ∑

i−1
j=1 an,ijεnj . Then zni = n

−1/2(e1n,i + e2n,ie4n,i +

e3n,ie
2
4n,i) and

n

∑
i=1

(E(z2ni∣Fn,i−1) −E(z2ni)) =
1

n

n

∑
i=1

((e24n,i −E e24n,i)E(e22n,i + 2e1n,ie3n,i) + (e44n,i −E e44n,i)E e23n,i

+ 2e4n,iE(e1n,ie2n,i) + 2(e34n,i −E e34n,i)E(e2n,ie3n,i)).

(D.9)
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For r = 1,2,3, n−1∑
n
i=1 b

r
nie4n,i = oP (1), since

E(
1

n

n

∑
i=1

brnie4n,i)
2
=
σ2
0

n2

n−1

∑
j=1

(
n

∑
i=j+1

an,ijb
r
ni)

2

≤
σ2
0

n2

n−1

∑
j=1

(
n

∑
i=j+1

∣an,ij ∣b
2r
ni)(

n

∑
i=j+1

∣an,ij ∣)

≤
h

n2

n

∑
i=1

b2rni(
i−1

∑
j=1

∣an,ij ∣) = O(n−1),

(D.10)

where h is a constant. For r = 1,2, 1
n ∑

n
i=1 b

r
ni(e

2
4n,i −E e24n,i) = oP (1), since

1

n

n

∑
i=1

brni(e
2
4n,i −E e24n,i) =

1

n

n

∑
i=1

i−1

∑
j=1

brnia
2
n,ij(ε

2
nj − σ

2
0) +

2

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

brnian,ijan,ikεnjεnk,

where

E(
1

n

n

∑
i=1

i−1

∑
j=1

brnia
2
n,ij(ε

2
nj − σ

2
0))

2
=

E ∣ε2nj − σ
2
0 ∣

2

n2

n−1

∑
j=1

(
n

∑
i=j+1

brnia
2
n,ij)

2
= O(n−1)

and

E(
1

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

brnian,ijan,ikεnjεnk)
2
=
σ4
0

n2

n−1

∑
j=1

j−1

∑
k=1

(
n

∑
i=j+1

brnian,ijan,ik)
2
= O(n−1),

as in (D.10). Similarly, n−1∑
n
i=1 bni(e

3
4n,i − E e34n,i) = oP (1) and n−1∑

n
i=1(e

4
4n,i − E e44n,i) = oP (1), since they

can be decomposed as

1

n

n

∑
i=1

bni(e
3
4n,i −E e34n,i) =

1

n

n

∑
i=1

i−1

∑
j=1

bnia
3
n,ij(ε

3
nj − µ3) +

3

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

bnia
2
n,ijan,ikε

2
njεnk

+
3

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

bnian,ija
2
n,ikεnjε

2
nk +

6

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

k−1

∑
l=1

bnian,ijan,ikan,ilεnjεnkεnl,

and

1

n

n

∑
i=1

(e44n,i −E e44n,i)

=
1

n

n

∑
i=1

i−1

∑
j=1

a4n,ij(ε
4
nj − µ4) +

1

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

(4a3n,ijan,ikε
3
njεnk + 4an,ija

3
n,ikεnjε

3
nk + 6a2n,ija

2
n,ik(ε

2
njε

2
nk − σ

4
0))

+
12

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

k−1

∑
l=1

(a2n,ijan,ikan,ilε
2
njεnkεnl + an,ija

2
n,ikan,ilεnjε

2
nkεnl + an,ijan,ika

2
n,ilεnjεnkε

2
nl)

+
24

n

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

k−1

∑
l=1

l−1

∑
m=1

an,ijan,ikan,ilan,imεnjεnkεnlεnm,

where each term on the r.h.s. of above equations converges to zero in probability since its variance has

the order O(n−1) as in (D.10). Note that in (D.9), E(e22n,i + 2e1n,ie3n,i), E(e1n,ie2n,i) and E(e2n,ie3n,i)

are polynomials of bni’s with bounded coefficients. Then ∑
n
i=1(E(z2ni∣Fn,i−1) − E(z2ni)) = oP (1). Thus

n1/2σ−2cn ∑
n
i=1(c

2
ni −E(c2ni∣Fn,i−1)) is asymptotically normal by Corollary 3.1 in Hall and Heyde (1980).
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As each term in (D.8) is a martingale with the same filtration, an arbitrary linear combination of the

terms in (D.8) is also a martingale. Furthermore, the first and third terms in (D.8) are both LQ forms,

with cni = n
−1/2[an,ii(ε

2
ni − σ

2
0) + 2εni∑

i−1
j=1 an,ijεnj + bniεni] being a typical martingale difference for an LQ

form. The terms in cni are similar to some terms in zni. Thus, an arbitrary linear combination of the

terms in (D.8) can be shown to be asymptotically normal in a way similar to that for the second term in

(D.8). It follows that (D.8) is asymptotically trivariate normal by the Cramér-Wold device. Now consider

a product of any two elements in (D.8). By the continuous mapping theorem, the product converges in

distribution; by Chebyshev’s inequality that [E(XY )]2 ≤ E(X2)E(Y 2) for any two random variables and

the finite variance of each element in (D.8), the product is uniformly integrable. Hence, for the central limit

condition in Theorem A,

ψo(x) − ψp(x) = x lim
n→∞

σ−3cnn
1/2 E(cn

n

∑
i=1

(c2ni −E(c2ni∣Fn,i−1))) (D.11)

and similarly,

ψp(x) = x lim
n→∞

σ−3cnn
1/2 E(cn

n

∑
i=1

(E(c2ni∣Fn,i−1) −E(c2ni))), (D.12)

where

σ−3cnn
1/2 E(cn

n

∑
i=1

(c2ni −E(c2ni∣Fn,i−1)))

= σ−3cnn
1/2

n

∑
i=1

E(E(c3ni∣Fn,i−1))

= σ−3cnn
−1

n

∑
i=1

[a3n,iiE(ε2ni − σ
2
0)

3
+ 8µ2

3

i−1

∑
j=1

a3n,ij + µ3b
3
ni + 12σ2

0[(µ4 − σ
4
0)an,ii + µ3bni]

i−1

∑
j=1

a2n,ij

+ 3(µ4 − σ
4
0)an,iib

2
ni + 3a2n,iibniE[εni(ε

2
ni − σ

2
0)

2
]]

(D.13)

and

σ−3cnn
1/2 E(cn

n

∑
i=1

(E(c2ni∣Fn,i−1) −E(c2ni)))

= σ−3cnn
−1 E[(

n

∑
i=1

[an,ii(ε
2
ni − σ

2
0) + bniεni] + 2

n

∑
i=1

i−1

∑
j=1

an,ijεniεnj)⋅

(8σ2
0

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

an,ijan,ikεnjεnk + 4σ2
0

n

∑
i=1

i−1

∑
j=1

a2n,ij(ε
2
nj − σ

2
0) + 4

n

∑
i=1

(µ3an,ii + σ
2
0bni)

i−1

∑
j=1

an,ijεnj)]

= σ−3cnn
−1

[4
n

∑
i=1

i−1

∑
j=1

[σ2
0a

2
n,ij[an,jj(µ4 − σ

4
0) + µ3bnj] + an,ij(µ3an,ii + σ

2
0bni)(µ3an,jj + σ

2
0bnj)]

+ 16σ6
0

n

∑
i=1

i−1

∑
j=1

j−1

∑
k=1

an,ijan,ikan,jk]. (D.14)

Therefore, all conditions in Theorem A are met. Thus (17) holds by (D.6) and (19) holds by (D.7).

To establish the expansion of the bootstrapped version, we shall follow the arguments in Mykland

(1992) [p. 8, below (3.5); p. 10, below (3.13)], and Proposition 3 of Mykland (1993). The asymptotic
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expansion is first extended for non-random bootstrap parameters, and then the use of a representation of

weak convergence of distributions by a sequence of almost surely convergent random variables. For (18)

and (20), first consider, instead of Assumption 1′, the case that εni’s in εn = (εn1, . . . , εnn)
′ are randomly

drawn from the distribution with mean zero, and moments µjn for j = 2, . . . ,8 and E ∣εni∣
8(1+δ) <∞ for some

δ > 0, all non-stochastic but depending on n, such that µjn = µj + o(1) for j = 2, . . . ,8. Also the bootstrap

distribution depends on a nonstochastic sequence of βn for our LQ form such that βn = β0+O(n−1/2), as the

residual vector is computed as yn −Xnβn. For such εni’s, with only adjustments of notations and bounds of

some inequalities in the proof above, we have the expansions (17) and (19), where ψo(x) and ψp(x) do not

change by inspecting (D.11)–(D.14). For the bootstrap with ε∗n sampled from the the recentered residuals

(In −
1
n
lnl

′
n)(yn −Xnβ̂n), where β̂n = (X ′

nXn)
−1X ′

nyn, we have µ∗jn = µj + oP (1) for j = 2, . . . ,8 by Lemma 2

and β̂n = β0 +OP (n−1/2) by Chebyshev’s inequality. Then (18) and (20) follow by Theorem IV.13 on p. 71

of Pollard (1984), where a weakly convergent sequence of probability measures can be represented by an

almost surely convergent sequence of random variables.

Proof of Proposition 3. The I′n may be written as I′n = B1n +B2n, where B1n =
ε′nHnMnHnεn−σ

2
0 tr(HnMn)

√
nσ̂cn

and

B2n =
(σ2

0−σ̂
2
n) tr(HnMn)
√
nσ̂cn

. By the mean value theorem,

∫

∞

−∞
h(x)dFn(x) = Eh(B1n +B2n) = Eh(B1n) +E[h′(B̄1n)B2n] = ∫

∞

−∞
h(x)dGn(x) +E[h′(B̄1n)B2n],

where B̄1n is between B1n and B1n +B2n, and Gn(x) is the distribution function of B1n. In the following,

we first prove an asymptotic expansion for ∫
∞

−∞
h(x)dFn(x) by showing that (i) ∫

∞

−∞
h(x)dGn(x) has an

asymptotic expansion based on martingales using Theorem 3 and (ii) E[h′(B̄1n)B2n] = o(n−1/2). Then

∫
∞

−∞
h(x)dF ∗

n(x) is shown to have a similar expansion. The result in the proposition follows by the expansions

for ∫
∞

−∞
h(x)dFn(x) and ∫

∞

−∞
h(x)dF ∗

n(x).

(i) The distribution function of Dn =
ε′nHnMnHnεn−σ

2
0 tr(HnMn)

√
nσcn

has an asymptotic expansion by Theo-

rem 3. The Dn and B1n only differ in the denominators: while Dn has σcn , B1n has an estimate of σcn . By

Theorem A and the proof of Theorem 3, for the asymptotic expansion of ∫
∞

−∞
h(x)dGn(x), we only need to

show that there are sets Qn with P(Qn) = 1 − o(n−1/2) such that

sup
n

E[
√
n∣σ̂2

cn/σ
2
cn − 1∣]1+δ1(Qn) <∞ (D.15)

for some δ > 0, and the central limit condition, for which we shall show that

(cn/σcn , n
1/2(σ−2cn

n

∑
i=1

c2ni − 1), n1/2(σ−2cn

n

∑
i=1

E(c2ni∣Fn,i−1) − 1), n1/2σ−2cn (σ̂
2
cn − σ

2
cn)) (D.16)

is asymptotically jointly normal.

We shall show that (D.15) holds with δ = 1 and Qn = (∣∣ξn∣∣ ≤ δ, ∣σ̂
2
n−σ

2
0 ∣ ≤ δ), where ξn = (ξn1, . . . , ξn,kx)

′ =

−(X ′
nXn)

−1X ′
nεn = OP (n−1/2). Note that P(∣∣ξn∣∣ > δ) ≤ δ−2 E(ξ′nξn) = O(n−1) and P(∣σ̂2

n − σ
2
0 ∣ > δ) ≤
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P(∣n−1(ε′nεn − nσ
2
0)∣ >

1
2
δ) + P(∣n−1ε′nXn(X

′
nXn)

−1X ′
nεn > 1

2
δ) = O(n−1), since P(∣n−1(ε′nεn − nσ

2
0)∣ >

1
2
δ) =

O(n−1) by Chebyshev’s inequality and P(∣n−1ε′nXn(X
′
nXn)

−1X ′
nεn >

1
2
δ) = O(n−1) by Markov’s inequality.

Then P(Qn) ≥ 1−P(∣∣ξn∣∣ > δ)−P(∣σ̂2
n−σ

2
0 ∣ > δ) = 1−O(n−1). Thus P(Qn) = 1−O(n−1). Since σ̂2

cn = σ̂2
cn+(cσ−

σ̂2
cn)1(σ̂

2
cn ≤ cσ), we have E[n(σ̂2

cn −σ
2
cn)

2]1(Qn) ≤ E[n(σ̂2
cn −σ

2
cn)

2]1(Qn)+E[n(cσ −σ
2
cn)

2]1(σ̂2
cn ≤ cσ). As

σ2
cn is bounded away from zero, we shall show that E[n(σ̂2

cn −σ
2
cn)

2]1(Qn) <∞ and E[n(cσ −σ
2
cn)

2]1(σ̂2
cn ≤

cσ) <∞ for (D.15). Note that ε̂n = εn+Xnξn, ε̂4ni may be expanded by writing it as ε̂4ni = (εni+∑
kx
j=1 xn,ijξnj)

4.

Using the expansion form of ε̂4ni,
√
n(µ̂4n − µ4) is the sum of n−1/2∑

n
i=1(ε

4
ni − µ4) and terms with the form

n−1/2(∑
n
i=1 ε

r0
nix

r1
n,i1 . . . x

rkx

n,i,kx
)ξr1n1 . . . ξ

rkx

n,kx
, where integers rj ≥ 0 for j = 0,1, . . . , kx and ∑

kx
j=0 rj = 4. Because

E[n−1/2∑
n
i=1(ε

4
ni − µ4)]

2 <∞,

E{n−1/2[
n

∑
i=1

(εr0ni −E εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
]ξr1n1 . . . ξ

rkx

n,kx
}
21(∣∣ξn∣∣ ≤ δ)

≤
1

n
δ2(4−r0)

n

∑
i=1

E(εr0ni −E εr0ni)
2x2r1n,i1 . . . x

2rkx

n,i,kx

<∞,

and

E{n−1/2[
n

∑
i=1

(E εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
]ξr1n1 . . . ξ

rkx

n,kx
}
2
1(∣∣ξn∣∣ ≤ δ)

≤ δ2(4−r0)−2(
1

n

n

∑
i=1

∣E(εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
∣)
2nE(ξ2nj)

≤ δ2(4−r0)−2(
1

n

n

∑
i=1

∣E(εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
∣)
2nE(ξ′nξn)

<∞,

for some j > 0 such that rj > 0, we have supnE[
√
n(µ̂4 − µ4)]

21(Qn) < ∞. Similarly, supnE[
√
n(σ̂2

n −

σ2
0)]

21(Qn) <∞. Hence, E[
√
n(σ̂4

n−σ
4
0)]

21(Qn) = E[n(σ̂2
n−σ

2
0)

2(σ̂2
n−σ

2
0+2σ2

0)
2]1(Qn) ≤ (2δ2+8σ4

0)E[n(σ̂2
n−

σ2
0)

2]1(Qn) <∞. Therefore, supnE[
√
n(σ̂2

cn −σ
2
cn)]

21(Qn) <∞. Furthermore, E[n(cσ −σ
2
cn)

2]1(σ̂2
cn ≤ cσ) =

n(cσ −σ
2
cn)

2 P(σ̂2
cn ≤ cσ) ≤ n(cσ −σ

2
cn)

2 P(∣σ̂2
cn −σ

2
cn ∣ ≥ σ

2
cn −cσ). Then E[n(cσ −σ

2
cn)

2]1(σ̂2
cn ≤ cσ) is bounded

if P(∣σ̂2
cn − σ

2
cn ∣ ≥ σ

2
cn − cσ) = O(n−1). Since P(∣n−1∑

n
i=1(ε

4
ni − µ4)∣ ≥ η) = O(n−1) for η > 0 and

P(∣n−1(
n

∑
i=1

εr0nix
r1
n,i1 . . . x

rkx

n,i,kx
)ξr1n1 . . . ξ

rkx

n,kx
∣ ≥ η)

≤ P(∣n−1(
n

∑
i=1

εr0nix
r1
n,i1 . . . x

rkx

n,i,kx
)ξr1n1 . . . ξ

rkx

n,kx
∣ ≥ η, ∣∣ξn∣∣ ≤ η) +P(∣∣ξn∣∣ > η)

≤ P(∣n−1[
n

∑
i=1

(εr0ni −E εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
]∣η4−r0 ≥

η

2
) +P(n−1

n

∑
i=1

∣(E εr0ni)x
r1
n,i1 . . . x

rkx

n,i,kx
∣ ⋅ η3−r0 ∣∣ξn∣∣ ≥

η

2
)

+P(∣∣ξn∣∣ > η)

= O(n−1),
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by Chebyshev’s inequality, we have P(∣µ̂4n −µ4∣ ≥ η) = O(n−1). As P(∣σ̂2
n − σ

2
0 ∣ ≥ η) = O(n−1), it follows that

P(∣σ̂2
cn − σ

2
cn ∣ ≥ σ

2
cn − cσ) = O(n−1).

For (D.16), the first three terms have been shown to be asymptotically trivariate normal by a martingale

central limit theorem. We shall show that the last term is asymptotically normal also by the martingale

central limit theorem, and the joint asymptotic normality of (D.16) follows by the Cramér-Wold device by

similar arguments to any linear combination of terms in (D.16). Note that n1/2(σ̂2
cn −σ

2
cn) = n

1/2(σ̂2
cn −σ

2
cn)+

n1/2(cσ − σ̂
2
cn)1(σ̂

2
cn ≤ cσ), where n1/2(cσ − σ̂

2
cn)1(σ̂

2
cn ≤ cσ) = oP (1) as in the proof of Proposition 1, then

n1/2(σ̂2
cn − σ

2
cn) has the same asymptotic distribution as n1/2(σ̂2

cn − σ
2
cn). As ε̂n =Hnεn, we have

√
n(σ̂2

n − σ
2
0) =

1
√
n
(ε′nεn − nσ

2
0) −

1
√
n
ε′nXn(

1

n
X ′
nXn)

−1 1

n
X ′
nεn =

1
√
n
(ε′nεn − nσ

2
0) + oP (1).

Then
√
n(σ̂4

n − σ
4
0) =

√
n(σ̂2

n + σ
2
0)(σ̂

2
n − σ

2
0) = 2σ2

0

1
√
n
(ε′nεn − nσ

2
0) + oP (1). (D.17)

Let eni be the ith column of the n-dimensional identity matrix. Since ε̂n = εn +Xnξn, where ξn = Op(n
−1/2),

by an argument as for the proof of Lemma 2, we have

√
n(µ̂4 − µ4) =

1
√
n

n

∑
i=1

(ε4ni − µ4) −
4

√
n

n

∑
i=1

ε3nie
′
niXn(X

′
nXn)

−1X ′
nεn + oP (1)

=
1

√
n

n

∑
i=1

(ε4ni − µ4) −
4µ3
√
n
l′nXn(X

′
nXn)

−1X ′
nεn + oP (1),

(D.18)

where the second equality holds because

1
√
n

n

∑
i=1

(ε3ni − µ3)e
′
niXn(X

′
nXn)

−1X ′
nεn =

kx

∑
j=1

1
√
n

n

∑
i=1

(ε3ni − µ3)e
′
niXnekx,je

′
kx,j(X

′
nXn)

−1X ′
nεn

with 1
√
n ∑

n
i=1(ε

3
ni − µ3)e

′
niXnekx,j = OP (1) by Chebyshev’s inequality. Hence,

√
n(σ̂2

cn − σ
2
cn) =

1

n

n

∑
i=1

(HnMnHn)
2
ii[

√
n(µ̂4 − µ4) − 3

√
n(σ̂4

n − σ
4
0)] +

1

n
tr[HnMnHn(Mn +M

′
n)]

√
n(σ̂4

n − σ
4
0)

=
n

∑
j=1

vnj + oP (1),

where

vnj =
1

n

n

∑
i=1

(HnMnHn)
2
ii

1
√
n
[(ε4nj − µ4) − 4µ3l

′
nXn(X

′
nXn)

−1X ′
nenjεnj − 6σ2

0(ε
2
nj − σ

2
0)]

+
2σ2

0

n
tr[HnMnHn(Mn +M

′
n)]

1
√
n
(ε2nj − σ

2
0).

Under Assumption I1′, ∑
n
j=1 E ∣vnj ∣

q = o(1) for some q > 2. Note that E(vnj) = 0 and vni and vnj are

independent for i ≠ j, then
√
nσ−2cn (σ̂

2
cn − σ2

cn) is asymptotically normal. As explained in the proof of

Theorem 3, (D.16) is asymptotically normal by the Cramér-Wold device, and in the central limit condition
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of Theorem A, ψo(x) and ψp(x) are as given in Theorem 3 for cn = n−1/2[ε′nHnMnHnεn − σ
2
0 tr(HnMn)]

and σ2
cn = n−1(µ4 − 3σ4

0)∑
n
i=1(HnMnHn)

2
ii + n

−1σ4
0 tr[HnMnHn(Mn +M

′
n)], and

ψ∗(x) = x lim
n→∞

σ−3cn

n

∑
j=1

E(cnjvnj)

= x lim
n→∞

1

nσ3
cn

n

∑
j=1

{[an,jj(µ6 − µ4σ
2
0) − 4an,jjµ

2
3l
′
nXn(X

′
nXn)

−1X ′
nenj − 6an,jjσ

2
0(µ4 − σ

4
0)

+ µ5bnj − 4µ3σ
2
0bnj l

′
nXn(X

′
nXn)

−1X ′
nenj − 6µ3σ

2
0bnj]

1

n

n

∑
i=1

(HnMnHn)
2
ii

+ [2an,jjσ
2
0(µ4 − σ

4
0) + 2σ2

0µ3bnj]
1

n
tr[HnMnHn(Mn +M

′
n)]}.

Hence, by Theorem A and the proof of Theorem 3, we have

∫

+∞

−∞
h(x)dGn(x) = ∫

+∞

−∞
h(x)dΦ(x)+

1

2
n−1/2 E{[

1

3
ψ0(Z)+

2

3
ψp(Z)]h(2)(Z)−ψ∗(Z)Zh(1)(Z)}+o(n−1/2),

where Z is a standard normal random variable. This finishes the proof of (i).

(ii) As σ̂2
cn ≥ cσ > 0 and h′(x) is bounded,

∣E[h′(B̄1n)B2n]∣ ≤ c∣n
−1/2 tr(HnMn)∣E ∣σ2

0 − σ̂
2
n∣,

for some constant c. Since tr(HnMn) = O(1), we have E[h′(B̄1n)B2n] = o(n
−1/2) if E ∣σ2

0 − σ̂
2
n∣ = o(1). The

σ̂2
n − σ

2
0 =

1
n
(ε′nεn − nσ

2
0) −

1
n
ε′nXn(X

′
nXn)

−1X ′
nεn, then

E ∣σ2
0 − σ̂

2
n∣ ≤ E ∣

1

n
(ε′nεn − nσ

2
0)∣ +E[

1

n
ε′nXn(X

′
nXn)

−1X ′
nεn]

≤ [E ∣
1

n
(ε′nεn − nσ

2
0)∣

2
]
1/2

+
kx
n
σ2
0

= [
1

n
(µ4 − σ

4
0)]

1/2
+
kx
n
σ2
0 .

Thus E ∣σ2
0 − σ̂

2
n∣ = o(1) and E[h′(B̄1n)B2n] = o(n

−1/2).

With (i) and (ii), we have

∫

+∞

−∞
h(x)dFn(x) = ∫

+∞

−∞
h(x)dΦ(x)+

1

2
n−1/2 E{[

1

3
ψ0(Z)+

2

3
ψp(Z)]h(2)(Z)−ψ∗(Z)Zh(1)(Z)}+ o(n−1/2).

By an argument similar to that in the proof of Theorem 3, we have

∫

+∞

−∞
h(x)dF ∗

n(x) = ∫
+∞

−∞
h(x)dΦ(x)+

1

2
n−1/2 E{[

1

3
ψ0(Z)+

2

3
ψp(Z)]h(2)(Z)−ψ∗(Z)Zh(1)(Z)}+oP (n−1/2).

Therefore,

∫

+∞

−∞
h(x)d[F ∗

n(x) − Fn(x)] = oP (n−1/2).
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