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Abstract

I analyze the competition among strategic informed traders in an economy with a
risky asset whose liquidation value is private information and follows a mean-reverting
process. Instead of being one-shot, the private information is acquired by informed
traders gradually. The unique linear equilibrium has an analytic form and is explicitly
analyzed. In the limit of continuous trading, (i) the imperfectly competitive informed
traders earn positive expected profits, contrary to the Bertrand-like results in Holden
and Subrahmanyam (1992) and Foster and Visvanathan (1993), and (ii) they contribute
significantly to price volatility and the fraction of total trading volume, whereas the
monopolist in Chau and Vayanos (2008) has negligible contributions. These results
can help (i) justify the co-existence of high frequency traders who employ very similar
strategies, and (ii) provide new insights and policy suggestions regarding to the effect
of high frequency competition.
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1 Introduction

Will it be possible for traders with superior private information to earn strictly positive ex-

pected profits in a strong-form efficient market? Holden and Subrahmanyam (1992) and

Foster and Viswanathan (1993) find that this is not possible and instead they reach a

Bertrand-like result with zero expected profits although traders in their models compete

through quantities(by submitting market orders). The intuition is that if there are at least

two strategic traders receiving the same piece of private information, each trader tries to

preempt the others given enough trading opportunities with the result that the private in-

formation is revealed instantaneously and each trader’s expected profits quickly vanish to

zero in the limit of continuous trading. Surprisingly, Chau and Vayanos (2008) find that

positive expected profits are possible while the market is strong form efficient in a monopo-

listic setup. A strategic informed trader privately observes a flow of private information and

chooses to trade aggressively on her information to push the price towards her valuation of

the asset1. In the limit, the information asymmetry disappears but the insider’s profits con-

verge to a positive constant. The difference between these models depends on the arrival of

private information. Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993)

follow the assumptions in Kyle (1985) in which private information is one-shot and the risky

asset has a fixed value and is to be liquidated at a predetermined date. In Chau and Vayanos

(2008), the informed trader receives new information repeatedly, the fundamental value of

the asset is stochastic, and trading takes place over an infinite horizon.

A question naturally arises, in an oligopolistic setting, if private information arrives

1According to Chau and Vayanos (2008), the monopolist is “impatient” for three reasons: (1) time
discounting, (2) public revelation of information, (3) mean-reversion of profitability.
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gradually across the trading periods instead of being one-shot at the start of the trading

sessions, will imperfect competition among informed traders still “kills” any trading profits

in the limit of continuous trading? The answer to this question is critical to understand the

evolution of financial markets. If the answer were “Yes” and conventional intuitions applied,

as the computing technology push the speed of trading faster and faster, it will be even more

difficult to justify the co-existence of several high frequency statistical arbitrageurs given

that they are following similar strategies.

In this paper, I study the nature of imperfect competition among those traders. One of

the purposes is to answer the question raised earlier regarding imperfect competition and the

profitability of informed traders near continuous trading. The other purpose is to examine

how competition affects other properties of the market such as price efficiency, the strategies

of informed traders, market liquidity and trading volume, especially relative to the findings

of the monopolist case in previous literature. In addition, the predictions from the model

can be used to shed light on existing empirical facts, and provide new insights and policy

suggestions with regards to high frequency trading.

In the model, there is a riskless bond and a risky asset. The liquidation value of the risky

asset which follows a stochastic process can only be observed by informed traders. Like the

“market order” model in Kyle (1985), multiple identically informed strategic traders and

exogenous liquidity traders execute batched market orders against competitive risk neutral

market makers. The informed traders receive new information each period and trading takes

place until the asset is liquidated at a random date. I prove that there exists a unique linear

equilibrium with a closed form solution, and derive analytical forms when trading becomes

continuous. Not surprisingly, the combined trading of multiple informed traders is more
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aggressive than the monopolistic trader in Chau and Vayanos, the equilibrium price is even

more revealing of the informed trader’s private information, and market depth improves

as the number of informed traders increases. Oligopolistic imperfect competition makes the

informed traders trade more aggressively than a monopolist, thus improving market efficiency

and increasing aggregate trading volume. The effects of imperfect competition on market

depth is slightly more difficult to interpret since it has two opposite effects. On the one

hand, with increasing competition, initially the net order flow will contain more information

relative to the noise trading, and therefore the adverse selection is more severe and market

depth is worse. On the other hand, as market becomes more efficient, there is less private

information conveyed by the demands of informed traders, and hence price is less sensitive

to the net order flow. In the stationary state, I show that the second effect dominates and

imperfect competition among informed traders help improving market liquidity.

Surprisingly, the model uncovers some important but unexpected results in the limit as

the time interval between trades goes to zero. The first result concerns the profitability of

the informed traders. If the intuition in Holden and Subrahmanyam (1992) is followed, one is

inclined to draw a conclusion similar to theirs that at any point in time, any newly acquired

private information is revealed into price instantaneously and profits goes to zero. However,

such conventional wisdom does not apply in this model. As I prove formally, over one trading

period, the aggregate profits of informed trading are of order ∆t where ∆t is the time interval

between auctions. Therefore, the aggregate profits of the informed traders remain bounded

away from zero. As the number of informed traders increases, their aggregate profits fall,

tending to zero only as the number of informed traders becomes large. To be more specific,

the aggregate profits near continuous trading is inversely proportional to the square root of
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the number of informed traders. The result has the flavor of Cournot competition, not the

flavor of Bertrand competition found in the one-shot private information model of Holden

and Subrahmanyam (1992) and Foster and Viswanathan (1993).

The second result concerns price efficiency. Although the model predicts that price is

fully revealing near continuous trading, the level of efficiency differs from previous findings.

If the variance of the private information not incorporated into price at each trading period

is defined as the inverse measure of price efficiency, one will find that the variance goes to

zero at a rate proportional to the time interval (∆t) between rounds of trading. This is much

faster than the corresponding strong-from efficiency result in the Chau and Vayanos’ model,

where the convergence rate is proportional to the square root of the time interval (
√

∆t)

between rounds of trading. The difference between the results of the two models hinges on

how much more aggressively the oligopolistic informed traders exploit their informational

advantage than the monopolistic informed trader. The informed traders in this model are

very aggressive in exploiting pricing errors, with trading intensity over ∆t to be proportional

to 1, much higher than
√

∆t, the magnitude of trading intensity of the monopolist in Chau

and Vayanos (2008) over the same trading period.

The third result concerns volume and volatility. The trading volume2 of informed traders

over ∆t is of order
√

∆t, the same magnitude as the trading volume of liquidity traders.

This implies that in the limit informed traders make a non-negligible contribution to total

trading volume and price volatility, and the fraction of contribution converges to one as

the number of informed traders becomes large. The result is novel since previous literature

2Trading volume is not well defined in continuous time Kyle’s model since total variation of Brownian
motion over any finite time is infinite.
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(Kyle’s model and many extensions) shows that the contributions to trading volume and price

volatility by strategic informed traders (monopoly or oligopoly) are negligible compared to

the contributions of liquidity traders.

These above theoretical results near continuous trading can generate some new empirical

implications with regards to the competition of high frequency trading. In recent years,

financial markets have witnessed rapid growth in high frequency trading3, made possible by

the evolution of technology. High frequency traders are a subset of algorithmic traders. Those

traders apply mathematical algorithms to either public or private statistical information,

and they use fast computers to implement the algorithms, transmitting orders in a few

milliseconds or less. High frequency traders contribute significantly to trading volume4.

Despite aggressive competition with one another, high frequency traders remain profitable5.

Kirilenko et al. (2011) document that high frequency traders are consistently profitable and

they even turned a profit on the day on May 6, 2010 Flash Crash.

I focus on the type of high frequency traders who are pursuing low latency statistical

arbitrage strategies6. According to Chlistalla (2011), these traders “seek to correlate between

assets and try to profit from the imbalance in these correlations”. It might not be appropriate

to label those traders as “informed” if one defines information as corporate news on “merger

3As pointed out by Duhigg in Stock Traders Find Speed Pays, in Milliseconds (New York Times, July
23, 2009), “Average daily volume has soared by 164 percent since 2005, according to data from NYSE. ...,
stock exchanges say that a handful of high-frequency traders now account for more than half of all trades.”

4In “The Real Story of Trading Software Espionage” (AdvancedTrading.com, July 10, 2009), Iati mentions
that “High-frequency trading firms, which represent approximately 2% of the trading firms operating in the
U.S. markets today, account for 73% of all U.S. equity trading volume.”

5Iati’s article states that “TABB group estimates that annual aggregate profits of low-latency arbitrage
strategies exceed $21 billion, spread out among the few hundred firms that deploy them.”

6There are other types of high frequency traders, such as the ones who are doing electronic market
making, and ones who are front running other slow traders in the market. My main focus are the ones who
are “informed” and consuming instead of providing liquidity, therefore I neglect other types of HFTs in the
model.
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and acquisition decisions” or “content of earnings announcements”. However, if those traders

are faster and better than average market participants in gathering and processing market

wide news including information on order flows and price movements on the security and any

other correlated securities, to generate private signals which provide them with some sort

of information advantage relative to the rest of market participants, it is reasonable to call

them “informed”7. This model, together with Chau and Vayanos (2008), can generate very

interesting and unique new insights with regards to the impact of high-frequency competition.

With in a particular security where there is only one monopolistic HFT, the entry of another

HFT with identical strategy will not only lead to the increase in price volatility, but also

lead to a sharp increase in the fraction of trading volume participated by HFTs from a few

percents in the monopoly to around 32% in the duopoly. Such insights cannot be generated

by previous theoretical models on HFTs, whether static or dynamic. Empirical evidence

on the effect of HFTs competition is rare, but a recent study by Breckenfelder (2013) uses

ticker-level NASDAQ OMXS data. Because different HFTs can be identified in the data,

Breckenfelder (2013) is able to exploit how the changes between monopolistic and duopolistic

HFT within individual stocks affect the quality of the market. He finds that the intraday

volatility increase by about 25% and a significant increase in market share of high-frequency

traders, qualitatively confirming the predictions from this model.

After the flash crash of May 6, 2010, there was a policy proposal suggesting that batching

orders less frequently can reduce the participation rate and profits of high frequency traders

and improve market depth. My model implies that such a regulation could have the opposite

7Hendershott and Riordan (2011) find that the market orders by high frequency traders have information
advantage.
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effect and reduce liquidity instead. If there is a positive cost of being a high frequency trader,

the number of high frequency traders might decrease with less frequent order batching, with

the result that less competition will lead to market being less liquid.

This paper belongs to the literature on strategic trading with asymmetric information.

In the pioneering work of Kyle (1985), a monopolistic insider uses liquidity traders as cam-

ouflage, reveals her private information gradually, and exploits her monopoly power over

time when facing a competitive risk neutral market maker. In the subsequent extensions by

Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993), due to the imperfect

competition among identically informed traders, almost all private information is revealed

only after a few trading rounds. Foster and Viswanathan (1994) replace homogenous private

information with a hierarchical information structure to study the learning heterogeneously

informed traders. Foster and Viswanathan (1996) relax the assumption even further to al-

low for a more general correlation structure among the signals received by multiple informed

traders. They show the initial correlation among the signals has a strong effect on the trad-

ing strategies and informativeness of prices. Traders initially compete aggressively on the

common part of the private information and later play a “waiting” game by making smaller

bets and trying to infer private information exclusive to others. Back et al. (2000) solve a

similar problem in continuous time and derive a closed-form solution.

The traders in my model exploit their private signals via market orders. Rosu (2009)

directly models the limit order book. He also finds a similar prediction that higher com-

petition causes smaller price impact. However, competition in his model is measured by

how fast traders arrive in the market whereas in my model, competition is measured by the

number of identically informed traders. In his model, traders trade for liquidity reasons and
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there is no asymmetric information, whereas the motive for trade in my model comes from

informational advantage.

Martinez and Rosu (2011) study a very similar problem. They tackle the problem directly

in setup similar to that of Back (1992) and focus on non-stationary equilibrium. In order

to generate linear equilibrium in continuous time, they assume an informed trader to have

uncertainty aversion regarding the level of the asset value (Informed traders care more about

the change in the value of asset than the level) and impose a technological constraint on the

market maker. My paper, in contrast, does not require any extra assumptions and hence is

more general.

In my model, high frequency traders are risk neutral. Therefore, the model cannot

explain the phenomena that high frequency traders reverse their inventories frequently, and

move in and out of short-term positions very quickly. Future work may explain pattern of

mean-reverting inventories by making the traders risk averse instead of risk neutral.

The paper is organized as follows. In Section II, I describe the model, solve the linear

equilibrium, and prove its uniqueness. Section III characterizes the equilibrium near contin-

uous trading. Section IV shows some comparative statics results. Section V concludes.

2 The Model

Assumption 1: Securities

I consider an economy with a single consumption good. There are a riskless bond with

zero interest rate and a non-dividend paying risky asset with a liquidation value vn which

evolves stochastically. Trading takes place from t = 0 to t = +∞ at the discrete points

tn = n∆t (n = 0, 1, 2, ...), until the risky asset is liquidated where ∆t is the time interval
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between the auctions. At the end of each period, there is a probability p = 1− exp (−r∆t)

that the risky asset is liquidated. I further assume the riskless bond is in perfectly elastic

supply. The liquidation value vn follows a mean-reverting process or random walk:

vn − vn−1 = κ(v̄ − vn−1)∆t+ εv,n. (1)

In the above specification, κ determines the adjustment speed of the liquidation value vn

to its long run fixed target v̄. κ is assumed to be greater than or equal to zero such that

the prices are stationary. If κ = 0, then vn follows a random walk. The innovation εv,n is

independently and normally distributed with mean zero and variance σ2
v∆t.

Assumption 2: Market Participants and Information Structure

The risk neutral market participants consist of a competitive market maker, M (M is a

positive integer) informed strategic traders, and a number of liquidity traders. The informed

traders are each assumed to be able to perfectly observe the liquidation value vn at each

period.

At each period, both the informed traders and liquidity traders submit market orders

to the market maker. The liquidity traders’ order is denoted by un, which is normally

distributed with mean zero and variance σ2
u∆t. I further assume un is uncorrelated with

εv,n. I denote the market order submitted by the jth informed trader at the nth period

(t = n∆t) by xj,n. In equilibrium, informed traders’ demands should be identical at each

period (x1,n = ... = xM,n = xn) because of symmetry argument.

Assumption 3: Timing of events

I assume at the nth period, the informed traders and the noise traders submit their
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demands before new private information arrives. After submitting their market orders,

the informed traders observe εn and thus vn. The market maker observes the total order

imbalance yn =
∑M

j=1 xj,n + un, then sets the price pn equal to the expected value of the

asset based on the history of order flows, and takes the other side of the trade. At the end of

the period, there is a probability p = 1− exp (−r∆t) that the liquidation value vn is public

announced, the risky asset is liquidated and investors profits are realized. Conditional on that

the asset has not yet been liquidated at the end of the nth period, I in ≡ {yτ , vτ |0 ≤ τ ≤ n}

is each informed trader’s information set, and Imn = {yτ |0 ≤ τ ≤ n} is the market makers’

information set.

Pricing

Since the market maker is assumed to be competitive and risk neutral, therefore, at

period n she sets the price pn equal to the expected value of the asset after she receives the

total batched market order yn = x1,n + ...+ xM,n + un. Therefore,

pn = E[
+∞∑
n′=n

(1− exp (−r∆t)) exp (−r(n′ − n)∆t)vn′|Imn−1, yn], (2)

where (1− exp (−r∆t)) exp (−r(n′ − n)∆t) is the probability that the asset is liquidated at

the end of the n′th period.

Lemma 2.1: The price pn is a linear function of the market maker’s expectation of the

current liquidation value of the risky asset E[vn|Imn ]:

pn =
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
E[vn|Imn ] +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
. (3)

Proof : See Appendix A.

Optimization
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Suppose the risky asset were liquidated at a random future date ν∆t. Given that the asset

has not been liquidated at n∆t ≤ ν∆t, the jth informed trader’s profits that accrue to her

from period n should equal to the difference between the value of her position (
∑

n≤τ≤ν vνxj,τ )

and the cost of this position (
∑

n≤τ≤ν pτxj,τ ):

πj,n =
∑
n≤τ≤ν

(vν − pτ )xj,τ . (4)

Since informed traders are risk neutral, at the nth period, the jth informed trader tries

to maximize her expected trading profits:

E[πj,n|Ijn−1] = E[
∑
n≤τ≤ν

(vν − pτ )xj,τ |Ijn−1] (5)

= E[
+∞∑
n′=n

(1− exp(−r∆t)) exp(−r(n′ − n)∆t)(
n′∑
τ=n

xj,τ (vn′ − pτ ))|Ijn−1]

Lemma 2.2: The jth informed trader’s objective function can be written as:

max
xj,n′≥n

E[
+∞∑
n′=n

exp(−r(n′−n)∆t)xj,n′(
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
vn′+

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
−pn′)|Ijn−1].

(6)

Proof : See Appendix A.

2.1 Equilibrium Concept

The equilibrium concept in this paper is similar to one in the previous literature. I follow

Foster and Viswanathan (1996) closely here and let Xj = (xj,1, ..., xj,ν) (for each j) and

P = (p1, ..., pν) represent the strategy functions were the asset liquidated at ν∆t. A Bayesian

Nash equilibrium of the trading game is a M + 1 vector of strategies (X1, ..., XM , P ) such

that:
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1. For any j = 1, ...,M and all n = 1, ..., ν, I have for X ′j = (x′j,1, ..., x
′
j,ν)

E[πj,n(X1, ..., Xj, ..., XM , P )|I in−1] ≥ E[πj,n(X1, ..., X
′
j, ..., XM , P )|I in−1] (7)

2. For all n = 1, ..., ν, I have

pn =
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
E[vn|Imn ] +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
. (8)

Therefore, the market maker sets the price equal to the expected value of the risky asset

conditional on her information set inferred from the order flow. Each risk neutral informed

trader, taking as given the price process set by the market maker and the strategies of

other informed traders, submits market orders to maximize the expected profits taking into

account the effect on the price.

I restrict attention to stationary linear Markov equilibrium. In order to set the price

pn which takes a linear form in equation (3), the market maker has to solve the inference

problem about vn. I then conjecture that informed trader j’s optimal strategy at period n

is to submit demands which depend linearly on the pricing error defined as the difference

between vn−1 and the market maker’s conditional estimation on vn−1

xj,n = βj(vn−1 − v̂n−1), (9)

where v̂n−1 = E[vn−1|Imn−1] to maximize her expected profits.

2.2 The Market Maker’s Inference Problem

To solve the market maker’s inference problem, I use Kalman filtering. Conjecture that at

the end of the (n − 1)th period, the market maker believe vn−1 to be normally distributed
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with mean v̂n−1 and variance Σv
8. Then, at the nth period, after observing the net order

imbalance yn, the market maker updates her belief about vn−1 in the form of

vn−1 = E[vn−1|In−1] +
λ

1− κ∆t
yn + ηn (10)

= v̂n−1 +
λ

1− κ∆t
(Xn + un) + ηn,

where the constant λ is the inference parameter for the market maker to be derived next.

Since vn follows a mean-reverting process (random walk if κ = 0) described in Equation (1),

vn has the following expression:

vn = (1− κ∆t)v̂n−1 + κ∆tv̄ + λyn + (1− κ∆t)ηn + εv,n. (11)

Therefore, the market maker’s posterior belief about vn is normally distributed with mean

E[vn|Imn ] = v̂n = (1− κ∆t)v̂n−1 + κ∆tv̄ + λyn (12)

and variance

Var(vn|Imn ) = Var((1− κ∆t)ηn + εv,n) = (1− κ∆t)2Var(ηn) + σ2
v∆t. (13)

Stationary condition requires that Var(vn|Imn ) = Σv.
Lemma 2.3: Given the trading strategy of the informed traders defined in equation (9),

the market maker’s inference parameter λ is given by

λ =
(1− κ∆t)Σv

∑M
j=1 βj

(
∑M

j=1 βj)
2Σv + σ2

u∆t
, (14)

and the variance of the market maker’s belief on vn satisfies the equation

(1− κ∆t)2Σvσ
2
u∆t

(
∑M

j=1 βj)
2Σv + σ2

u∆t
+ σ2

v∆t = Σv. (15)

8Σv is strictly greater than σ2
vh since the informed traders observe εv,n−1 after they submit the market

order at the (n− 1)th period.
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Proof : See Appendix B.

2.3 The Informed Traders’ Optimization Problem

At the beginning of each period, each informed trader submits market orders given the price

process generated by the market maker to maximize the present value of the expected profits

scaled by 1−exp (−r∆t)
1−exp (−r∆t)(1−κ∆t)

. The jth informed trader’s optimization problem becomes

E[
+∞∑
n′=n

xj,n′(vn′ − v̂n′)e−r(n
′−n)∆t|I in−1]. (16)

In the optimization problem, the informed trader takes into account of how his trading

and the trading by other informed traders affect the market price. I conjecture that the

value function for the jth informed trader is quadratic with respect to vn−1− v̂n−1 and takes

the form of

Vj(vn−1 − v̂n−1) = Bj(vn−1 − v̂n−1)2 + Cj. (17)

Later, I will prove the quadratic form is sustained and valid in Lemma 2.4. The value

function must satisfy the following Bellman equation:

Vj(vn−1, v̂n−1) = maxxj,n E[xj,n(vn − v̂n) + e−r∆tVj(vn, v̂n)|Ijn−1]. (18)

The solution of the above Bellman equation is provided in the following theorem:
Lemma 2.4: Given the price process set by the market maker, each informed trader’s

strategy (equation (9)) is characterized by the same trading intensity parameter9 β, given by

β =
(1− 2e−r∆tBλ)(1− κ∆t)

λ(M + 1− 2Me−r∆tBλ)
. (19)

9Since at equilibrium, informed traders choose identical strategy. From this point, I suppress the subscript
j.
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Equation (18) has a quadratic solution of the form V (vn−1, v̂n−1) = B(vn−1 − v̂n−1)2 + C
where B and C satisfy the following set of equations:

B =
(1− κ∆t)2(1− e−r∆tBλ)

λ(1 +M − 2Me−r∆tBλ)2
(20)

and

C =
e−r∆tB(λ2σ2

u + σ2
v)∆t

1− e−r∆t
. (21)

Proof : See Appendix B.

2.4 Equilibrium

Proposition 2.1: There exists a unique linear Markovian equilibrium characterized by five

parameters λ, Σv, β, B and C which satisfy the system of five nonlinear equations: (14),

(15), (19), (20) and (21). The expressions for Σv, β, λ, B and C are given by :

Σv =
M(1− 2q1) + 1

M(1− 2q1) + 1− (1− κ∆t)2
σ2
v∆t, (22)

β =
σu
σv

√
(1− 2q1)(M(1− 2q1) + 1− (1− κ∆t)2))

M(M(1− 2q1) + 1)
(23)

λ =
(1− κ∆t)σv

√
M(1− 2q1)

σu
√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

, (24)

B =
er∆tq1σu

√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

(1− κ∆t)σv
√
M(1− 2q1)

(25)

and

C =
q1σuσv∆t

1− e−r∆t
[

(1− κ∆t)
√
M(1− 2q1)√

M(1− 2q1) + 1
√

1 +M(1− 2q1)− (1− κ∆t)2
(26)

+

√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

(1− κ∆t)
√
M(1− 2q1)

]
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where

q1 =
M + 1

3M
(27)

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3,

Z = e−r∆t(1− κ∆t)2 < 1 and M ≥ 2.

Proof : See Appendix B.

3 Asymptotic Properties of Equilibrium in the Limit

of Continuous Trading

3.1 Research Questions

It is important to study how imperfect competition affects the properties of equilibrium,

especially when the frequency of trading becomes very large approaching to the limit of

continuous trading. Firstly, it is intuitively to believe that increasing competition will make

the already “impatient” monopolistic trader in Chau and Vayanos (2008) even more “impa-

tient”. The aggregate trading of multiple informed traders competing strategically should

be more aggressive than in the monopolist case and therefore price should become more

efficient. Chau and Vayanos find that when the time interval between rounds of trading is

small, the trading volume of the informed monopolist over ∆t is of order ∆t3/4, and the

variance of private information not incorporated into price Σv is proportional to
√

∆t. It

is interesting to ask how does the more aggressive trading by informed traders affect the

trading volume and price efficiency? Will the oligopolistic informed traders contribute the

same magnitude of trading volume as in the monopolistic case or some magnitude higher?
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If higher, how will that affect the level of price efficiency?

Secondly, does more competition improve market depth or not? As shown in the non-

stationary setup in Holden and Subrahmanyam (1992), imperfect competition has two op-

posite effects. The market is less liquid in the beginning of the trading sessions since the

net order flow contains more private information relative to the noise, and the market maker

has to set price more sensitive to the order flow. After most information is revealed in the

remaining of trading sessions, the market becomes very deep since price is already very ef-

ficient and there is less information asymmetry between the informed traders and market

maker. Since I am focusing on the stationary state equilibrium, it is reasonable to believe

that the second effect dominates and market depth should be improved.

Thirdly, Foster and Viswanathan (1993) show that identically informed traders’ profits

converge to zero in a continuous trading limit since by trading more frequently the traders

have more opportunities to preempt other traders. In their model and the model of Holden

and Subrahmanyam (1992), private information is one-shot. It is important to examine

whether this Bertrand-like result still holds in the model where private information is ob-

served gradually. Since the informed traders’ profitability hinges on the liquidity trader’s

ability to destabilize the price, the informed traders earn positive expected profits as long

as the price impact remains non-zero. The market maker cannot set price impact to zero

because there is always new information coming in and the market maker has to cautious

on the information embedded in the net order flow. As long as the price impact is strictly

positive in the limit, informed traders’ profits should remain positive and bounded away

from zero.

To answer the above questions, I derive the asymptotic properties of the equilibrium near
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continuous trading in the following theorem.

3.2 Asymptotic Properties of Equilibrium

Proposition 2.2: In the limit of continuous trading (∆t→ 0), the asymptotic behaviors of

Σv, β, λ, B and C are given by:

lim
∆t→0

Σv

∆t
=
σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(28)

lim
∆t→0

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
(29)

lim
∆t→0

λ =
σv
σu

√
1

1 +M(1− 2q0)
(30)

lim
∆t→0

B =
q0σu
σv

√
1 +M(1− 2q0) (31)

lim
∆t→0

C =
q0σuσv
r

(
√

1 +M(1− 2q0) +

√
1

1 +M(1− 2q0)
). (32)

where

q0 =
M + 1

3M
(33)

− 1

6M

3

√
(M + 1)3 − 18M + 9 +

√
((M + 1)3 − 18M + 9)2 − (M2 + 2M − 2)3

− 1

6M

3

√
(M + 1)3 − 18M + 9−

√
((M + 1)3 − 18M + 9)2 − (M2 + 2M − 2)3.

Proof : See Appendix B.

From the above theorem, the parameter which measures the uncertainty of the market

maker about the liquidation value of the risky asset, Σv, converges to 0 when ∆t goes to

0. The value Σv is also the variance of private information not incorporated into price at

each period. The notation Σv ∼ ∆t means that when trading is continuous, all private

information is reflected in the price, information asymmetry disappears, and the market is
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strong form efficient. Although we reach the same conclusion regarding market efficiency

as in Chau and Vayanos’ model, there is still some difference in the level of price efficiency

for small ∆t. Since Σv ∼
√

∆t for the case of a monopolistic informed trader and Σv ∼ ∆t

for the imperfectly competitive case, we have Σv(M=1)
Σv(M>1)

∼ 1√
∆t

with the ratio converging to

infinity when ∆t→ 0. Therefore, the equilibrium price with M ≥ 2 informed traders is even

more revealing of the informed traders’ private information than the monopolist case. We

should also expect that trading intensity is qualitatively different. In Chau and Vayanos,

when there is only one monopolistic informed trader, β ∼
√

∆t. However, β is of order 1

when the market is populated with multiple informed traders. This implies that imperfect

competition makes traders to exploit the pricing errors much more aggressively and in turn

brings information into the price much more quickly. Therefore, market makers learn more

from the order flows and set more efficient price.

Next, I examine the trading volume contributed by informed traders to check whether it

is comparable to the trading volume of liquidity traders in continuous trading. One can tell

that β is of order 1 and |vn−1 − v̂n−1| ∼
√

∆t. Then over one trading period, the absolute

aggregate trading volume of an informed trader |xn| = β|vn−1− v̂n−1| is of order
√

∆t. Since

the trading volume contributed by liquidity trader is of the same order |un| = σu
√

∆t, it

follows that the informed traders generate a non-negligible fraction of total trading volume

because the ratio |Xn|
|un| converges to a positive constant bounded away from zero. The next

theorem derives the fraction of trading volume contributed by informed traders.
Proposition 2.3: Define ξM = M |xn|

M |xn|+|un|+|yn| to be the fraction of trading volume con-
tributed by the informed traders. The value of ξM can be expressed as

ξM =
M
√

1− 2q1

M
√

1− 2q1 + 1 +
√
M2(1− 2q1) + 1

. (34)
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In the limit of continuous trading ∆t→ 0, we have

ξ0
M = lim

∆t→0
ξM =

M
√

1− 2q0

M
√

1− 2q0 + 1 +
√
M2(1− 2q0) + 1

(35)

which depends only on the number of informed traders and is strictly greater than zero.

Proof : See Appendix B.

In most dynamic market microstructure models, the informed traders’ trade does not have

a diffusion component which contributes to volatility in the limit of continuous trading since

their fraction of trading volume is zero. In my model, as illustrated above, informed traders

contribute significantly to trading volume, and therefore they should contribute significantly

to price volatility as well. It is trivial to write ∆pn as

∆pn = pn − pn−1 =
(1− exp (−r∆t))

1− exp (−r∆t)(1− κ∆t)
∆v̂n (36)

=
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
λ(Mβ(vn−1 − v̂n−1) + un).

The price variance in the stationary state can therefore be written as

Var(∆pn)

∆t
= (

1− exp (−r∆t)
1− exp (−r∆t)(1− κ∆t)

)2λ
2(M2β2Σv + σ2

uh)

∆t
. (37)

The next theorem illustrates the contribution of price variance by informed traders and

liquidity traders.

Proposition 2.4: In the continuous trading limit (∆t→ 0), the price variance lim∆t→0
Var(∆pn)

∆t

can be decomposed into two components: (i) a contribution from informed traders given by

( r
r+κ

)2β2λ2 σ
2
v(1+M(1−2q0))
M(1−2q0)

; (ii) a contribution from liquidity traders given by ( r
r+κ

)2 σ2
v

1+M(1−2q0)
.

The total price variance which is the sum of these two components, is ( r
r+κ

)2σ2
v, independent

of the number of traders.
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Proof : (i) and (ii) are trivial to prove. To prove the last point regarding total price

variance, observe that

λ2(M2β2Σv + σ2
u) =

σ2
v

σ2
u

1

1 +M(1− 2q0)
[
M2(1− 2q0)2

1 +M(1− 2q0)

σ2
u

σ2
v

σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(38)

+ σ2
u]

=
σ2
v

σ2
u

1

1 +M(1− 2q0)
[M(1− 2q0)σ2

u + σ2
u]

= σ2
v .

Finally, I examine each informed trader’s profitability. The expected profits can be

written as

E[
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
V (vn−1, v̂n−1)] =

1− exp (−r∆t)
1− exp (−r∆t)(1− κ∆t)

(B E[(vn−1−v̂n−1)2]+C).

(39)

The term B E[(vn−1 − v̂n−1)2] = BΣv converges to 0 when ∆t→ 0. But (1−exp (−r∆t))
1−exp (−r∆t)(1−κ∆t)

C

converges to a positive constant from Proposition 2.2. Hence, competition makes the aggre-

gate profits fall, but it does not drive profits to zero. The results are in sharp contrast with

the ones found in Holden and Subrahmanyam (1992) and Foster and Viswanathan (1993)

although sharing a similar result in terms of market efficiency.

If we further assume that each informed trader has to pay a fixed cost c to acquire the

stream of private signals, then whether each informed trader’s decision to acquire the signals

and trade hinges on whether her expected utility (expected profits) from trading exceeds

her utility from not trading. Since the traders are risk neutral, the expected utility from

trading is 1−exp (−r∆t)
1−exp (−r∆t)(1−κ∆t)

(BΣv + C) and the utility from not trading is c. Therefore, the

equilibrium number of informed traders is the largest integer that satisfies the following
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condition:

1− exp (−r∆t)
1− exp (−r∆t)(1− κ∆t)

(BΣv + C) ≥ c. (40)

In the limit of continuous trading, the inequality condition becomes

q0σuσv
r + k

(
√

1 +M(1− 2q0) +

√
1

M(1− 2q0)
) ≥ c. (41)

3.3 Properties of the Perfectly Competitive Equilibrium

I examine another class of asymptotic results by taking the limit as M goes to infinity. It

is easy to verify that when M → +∞, limM→∞M
2q0 = 1. Then substituting 1

M2 for q0 in

Proposition 2.2, I can derive the properties of the perfectly competitive equilibrium in the

limit of continuous trading in the next theorem.

Proposition 2.5: In the perfectly competitive case (i.e., when the number of traders

goes to infinity), the asymptotic properties of the equilibrium now becomes:

lim
∆t→0,M→+∞

Σv

∆t
= σ2

v (42)

lim
∆t→0,M→+∞

√
Mβ =

σu
σv

(43)

lim
∆t→0,M→+∞

√
Mλ =

σv
σu

(44)

lim
∆t→0,M→+∞

M
3
2B =

σu
σv

(45)

lim
∆t→0,M→+∞

M
3
2C =

σuσv
r

(46)

lim
M→+∞

ξM =
1

2
(47)

.

Since σ2
v∆t is the variance of new private information the informed traders learn at
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each period, lim∆t→0,M→+∞
Σv

∆t
= σ2

v implies that in the perfectly competitive case, there is

no information left on the table. The result on β suggests that although each individual

trader’s trading intensity can be infinitesimally small, the aggregate trading intensity can

be very large as the number of traders increases. The results on λ and C suggest that as

the number of informed traders increases, market depth improves, but aggregate expected

profits fall, tending to zero only as the number of informed traders becomes large. The result

on ξM , the fraction of trading volume from informed traders, can be arbitrarily close to 1
2

as the number of traders is large enough. The fraction cannot go beyond 1
2

since the total

trading volume includes the contribution from the market maker.

4 Numerical Illustrations and Comparative Statics

In what follows, I numerically illustrate how information structure and imperfect compe-

tition among informed traders affect market efficiency, market liquidity, trading volume,

price volatility, and expected profits of the informed traders. I also provide some empirical

implications.

Since the parameter M is defined to be the number of informed traders, the model

becomes a monopolist case if M is set to be 1 and an oligopolistic case when M ≥ 2. Most

of the comparative static analysis is concerned with the effect of changing M . One issue

concerns the comparison between the duopolist case and monopolist case. The entry of an

extra identical informed trader to the monopolist case will change the asymptotic properties

of equilibrium in Chau and Vayanos’ model dramatically. Another issue concerns within the

oligopolistic situation. As we increase M from M = 2 to large values, the competition among

informed traders increases. I examine how changing the intensity of competition affects the
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properties of equilibrium.

Market Efficiency

I set the parameters such that σv = σu = κ = 1 and r = 0.05. The variable Σv measures

the market maker’s uncertainty about the liquidation value of the risk asset. It is therefore

an inverse measure of price efficiency. Σv = 0 corresponds to the scenario where information

asymmetry vanishes and the market is strong-form efficient. Since increasing the number

of imperfect competitors makes traders willing to incorporate more private information into

the price, the price should become more informative and hence a smaller Σv should be

expected. As trading becomes more frequent (∆t is smaller), the noncooperative setting

results in a more aggressive competition, making the already “impatient” informed traders

even more “impatient”. To illustrate these intuitions, I show how Σv varies with ∆t and M

in Figure 1(A).

As shown in the figure, Σv monotonically decreases with ∆t for the monopolist case and

for the oligopolist cases when M = 2, 3 and 10. The value of Σv declines more rapidly for

M ≥ 2 than for M = 1. If we fix ∆t and vary only the number of informed traders, Σv is

found to be inversely related with the number of informed traders M .

Next I examine the asymptotic properties of Σv. According to Chau and Vayanos (2008),

Σv ∼
√

∆t as ∆t→ 0 in the monopolist case M = 1. I prove in Proposition 2.2 that Σv ∼ ∆t

in the oligopolist case M ≥ 2. In Figure 1(B), I show how the scaled value of Σv varies with

∆t for different M . I scale Σv by
√

∆t for M = 1 and ∆t for M ≥ 1. From the figure,

Σh√
∆t

approaches to a constant for M = 1, confirming the asymptotic result obtained for

the monopolistic trader. When M ≥ 2, Σv

∆t
converges to a positive constant confirming the

asymptotic property of Σv obtained in Proposition 2.2. Since the ratio Σv(M=1)
Σv(M≥2)

√
∆t

∆t
→∞ as
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∆t converges to zero, private information is revealed much more quickly and price becomes

more efficient when there are multiple traders in the market.

Trading Intensity β

I have shown that, with increasing competition, more information is incorporated into

price. Intuitively, one should expect that the aggregate trading intensity should be higher,

and the fraction of trading volume contributed by informed traders should also be higher

when M increases. I demonstrate numerically how each trader’s trading intensity β and

aggregate trading volume generated by the informed traders per period E[|Xn|] vary with

∆t, respectively, for the cases when M = 1, 2 ,3 and 10 in Figure 2.

As can be seen from the figure, when we compare monopoly M = 1 with duopoly M = 2,

the increased competition between the two traders induces each duopolist to choose a higher

trading intensity β as shown in Figure 2(A) when ∆t is small. But the result reverses sign

as we continue adding more informed traders when ∆t is small. For M ≥ 2, the more the

informed traders, the less trading intensity from each individual trader. Each trader’s optimal

strategy is to exploit less the investment opportunity determined by the difference between

the true valuation of the asset and the price set by the market maker. Consequently, each

trader may actually trades less intensely as more traders become informed. In aggregate,

competition does make the traders behave more aggressively since the aggregate trading

intensity Mβ increases as competition becomes more intensive. In other words, when ∆t is

small, for M ≥ 2, the value of β is decreasing in M while the value of Mβ is increasing in M .

Figure 3 illustrates how the asymptotic trading intensity lim∆t→0 β and aggregate trading

intensity M lim∆t→0 β vary with the number of informed traders. Although each individual

trader trades less intensely, the aggregate trading intensity monotonically increases with M .
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Figure 1: (A) Σv as a function of ∆t for M = 1, M = 2, M = 3 and M = 10. (B) Scaled
Σv as a function of ∆t. Σv is scaled by

√
∆t for M = 1, and by ∆t for M ≥ 2. Parameter

values: σv = σu = κ = 1 and r = 0.05.
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Figure 2: (A) The trading intensity parameter β as a function of ∆t for M = 1, M = 2,
M = 3 and M = 10. (B) The aggregate expected trading volume per period E[Xn|] as a
function of ∆t for M = 1, M = 2, M = 3 and M = 10. Parameter values: σv = σu = κ = 1
and r = 0.05.
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Figure 3: lim∆t→0 β and lim∆t→0Mβ as functions of the number of informed traders.

Trading Volume

As shown in Figure 2(B), the expected aggregate quantity of informed trading per period

E[|Xn|] monotonically increases with the number of traders M . Therefore, although each

individual trader tends to submit lower demand when the market becomes more competitive,

the aggregate trading volume which contains private information increases, conveying more

information to the market maker.

The asymptotic properties of β and E[|Xn|] can be inferred from Figure 2. In the mo-
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nopolist case, β is of order
√

∆t and E[|Xn|] = β
√

Σv is of order ∆t
3
4 . In the imperfectly

competitive case, β converge to a positive constant and E[|Xn|] ∝ ∆t
1
2 . Intuitively, as trading

becomes more frequent, there is less liquidity trading at each period to provide camouflage.

Therefore, the informed traders trade less intensely and scale back the trading volume at

each period. It can also be noted that in the monopolist case, the insider generates a negli-

gible fraction of total trading volume, whereas in the imperfectly competitive case, the total

aggregate volume submitted by the informed traders is comparable to the volume by the

liquidity traders. The results are illustrated in Figure 4. When M = 1, the ratio quickly

converges to zero when ∆t is small. But the ratios converge to positive constants when

M > 1 and can be arbitrarily close to 1
2

when M is large enough. The empirical implications

of this result is that, when the frequency of trading is sufficiently high,

Price Variance

Since the aggregate trading volume is comparable to the trading volume of the liquidity

traders, following similar argument and Proposition 2.3, the informed traders’ contribution

to the total price variance can also be non-negligible. Figure 5 illustrates how the total price

variance (blue lines) and its contribution by the informed traders (red lines) varies with the

time interval between rounds of trading and the number of informed traders.

In the monopolist case, although total price variance increases when ∆t is small, the

contribution by the monopolistic trader converges to zero. The liquidity trader therefore

contributes almost all of the price volatility near continuous trading. In the imperfectly

competitive case, not only do informed traders contribute significantly to the total price

variance near continuous trading, but the ratio increases as the number of informed traders

increases.
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Figure 4: Fraction of trading volume of informed traders as a function of ∆t for M = 1, 2, 3
and 10. Parameter values: σv = σu = κ = 1 and r = 0.05..
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Figure 5: Total price variance (blue lines) and the contribution by the informed traders (red
lines) as a function of ∆t for M = 1, 2, 3 and 10. Parameter values: σv = σu = κ = 1 and
r = 0.05..
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Figure 6: The market liquidity parameter λ as a function of ∆t for M = 1, 2, 3 and 10.
Parameter values: σv = σu = κ = 1 and r = 0.05.

Market Liquidity and Profitability

Stationarity requires that the price impact λ is a time-independent constant. Figure 6

illustrates the effect of competition on λ. If we fix ∆t and increase the number of informed

traders, λ declines accordingly. This is because in a steady state, more competition leads to

less information asymmetry between informed traders and market maker. When the number

of informed traders is fixed and trading frequency increases, numerical calculations show

that λ increases and converges to a positive constant.

The fact that λ remains strictly positive in the continuous trading limit ensures that
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informed traders make strictly positive expected profits. This is because informed traders

benefit from the trading of liquidity traders. Their profits are higher when price impact is

higher and when liquidity traders are able to deviate the price further away from the efficient

value giving informed traders opportunities to trade. To give a more rigorous explanation,

remember that profit margin per share is
√

Σv which is of order
√

∆t when ∆t is small.

The demand submit in period n in absolute term by each informed trader is proportional

to
√

∆t. Then at each period, each informed trader earns a small expected profits in the

order of ∆t. The present value of the aggregate profits at any period n is proportional

to
∑∞

k=n e
−r(k−n)∆th, which is finite when ∆t → 0. Hence, our model predicts that each

informed trader can still earn positive expected profits in the continuous trading limit. But

imperfect competition does make each informed trader worse off. To demonstrate the effect

of competition on expected profits, I plot in Figure 7 the aggregate expected profits of

informed traders of informed traders as a function of ∆t for different M . When M ≥ 2,

the aggregate profits monotonically decrease with M for fixed ∆t and converge to positive

constants as ∆t→ 0.

Figure 8 illustrates how the asymptotic price impact lim∆t→0 λ varies with the number of

informed traders. lim∆t→0 λ monotonically decreases with M . When the number of traders is

large enough, the market can be infinitely deep with lim∆t→0 λ very close to zero. Therefore,

the aggregate profits of informed traders also converges to zero as M →∞.

Endogenous Information Acquisition and Policy Suggestion

I have just shown that when the number of informed traders (M) and the amount of noise

trading (σu) are fixed, the market depth improves as the frequency of trading decreases.

However, such result on market liquidity does not necessarily hold if we endogenize the
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Figure 7: Aggregate expected profits as a function of ∆t for M = 1, 2, 3 and 10. Parameter
values: σv = σu = κ = 1 and r = 0.05.
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Figure 8: lim∆t→0 λ as a function of the number of informed traders.
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number of informed traders by introducing a fixed cost to entry. The intuition is that as the

trading frequency declines, the profitability of each informed trader drops as well. As the

profitability reaches to zero, the number of informed traders in the market should decline

to make sure the expected profits remain to be positive. Less competitive pressure results a

less market depth provided by the market maker.

As shown in figure 9(b), with a positive fixed cost to entry c, initially the number of

informed traders is M = 4. When the interval between trading increases to ∆t = 0.075, the

number of informed traders is reduced to three and there is a sudden jump in the price impact

λ (figure 9(c)). Although the inverse measure of market efficiency Σv still monotonically

increases with ∆t (figure 9(d)), the market liquidity does not necessarily improve as ∆t

increases (worse by more than 10% at ∆t = 0.75 in this example).

After the May 6th “flash crash”, HFTs have been under scrutiny and the subject of in-

tense public debate and controversy. Regulators have expressed concerns over which whether

HFTs affect the overall integrity of the equity markets. If HFTs were socially useless invest-

ments as argued by some economists, then it would be natural for regulators to impose a

minimum latency (slowing the market). However, such latency requirement does not neces-

sarily improve all the aspects of the markets. Take market liquidity for example, as shown in

Figure 9, if orders are batched less frequently, the market depth might be worse off instead

of being improved. This is because that traders’ profits will decrease if they have to trade

less frequently, and as traders start to exit the market due to declining profits, the market

becomes less liquid due to less competition among informed traders.
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Figure 9: (a) Profitability, (b) number of informed traders (M), (c) price impact (λ) and (d)
inverse measure of market efficiency (Σv) as functions of ∆t when each informed trader has
to pay a fixed cost c to enter the market. Parameter values: σv = σu = κ = 1, r = 0.05 and
c = 0.1.
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5 Conclusion

In this paper, I analyze how imperfect competition among informed traders affects market

efficiency, liquidity, trading volume and the profitability of informed traders. The combined

trading of multiple informed traders is more aggressive than the monopolistic trader, the

equilibrium price is even more revealing of the informed traders’ private information, and

market depth improves as the number of informed traders increases. In the continuous

trading limit, the variance of private information held by informed traders goes to zero at a

rate proportional to the time interval between rounds of trading. This is much faster than

the corresponding strong from efficiency result in the Chau and Vayanos model, where the

convergence rate is proportional to the square root of the time interval. In addition, in the

limit as the time interval between rounds of trading goes to zero, the aggregate profits of

the informed traders remain bounded away from zero and they contribute significantly to

the total trading volume and price volatility.

If high frequency traders are “informed” in a sense that they are able to generate prof-

itable private signals consistently by processing information from order flows and price move-

ments of securities across market, then this model provides a reasonable characterization of

those traders. My results suggest that the entry of more high frequency traders improves

market efficiency by incorporating information more quickly into price, improves market

liquidity by lowering price impact, and increases the fraction of trading volume from high

frequency traders. But those traders remain profitable despite exploiting the same informa-

tion set and implementing similar algorithms.

Future research can extend the results of this paper in two directions. First, to explain
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why high frequency traders quickly reverse their inventories, we may add risk aversion.

Second, the assumption that traders are identically informed is too strong. The assumption

does not allow the more realistic scenario in which the informed traders learn from each

other. Li (2012a) extends this paper by introducing a hierarchical information structure in

which there is one strictly better informed trader and one less informed trader. Li (2012b)

further relax the assumption in this paper even further to allow for a more general correlation

among streams of private information in which each trader has to forecast the forecasts of

other traders.
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Appendix A

Proof of Lemma 2.1: It is easy to verify that

vn′ = (1− κ∆t)n
′−nvn + κ∆tv̄

n′∑
τ=n

(1− κ∆t)n
′−n +

n′∑
τ=n

(1− κ∆t)n
′−nεv,τ . (48)

Taking expectations in equation (48), we have

E[vn′ |Imn ] = (1− κ∆t)n
′−n E[vn|Imn ] + κ∆tv̄(1− (1− κ∆t)n

′−n+1). (49)

Substituting into equation (2), the price is equal to

pn =
+∞∑
n′=n

1− exp (−r∆t) exp (−r(n′ − n)∆t)((1− κ∆t)n
′−n E[vn|Imn ] (50)

+ κ∆tv̄(1− (1− κ∆t)n
′−n+1))

=
(1− exp (−r∆t))

1− exp (−r∆t)(1− κ∆t)
E[vn|Imn ] +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
.
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Proof of Lemma 2.2: First, one can find that:

+∞∑
n′=n

exp(−r(n′ − n)∆t)(
n′∑
τ=n

xj,τ (vn′ − pτ )) = (51)

xj,n

+∞∑
τ=n

exp(−r(τ − n)∆t)(vτ − pn)

+ xj,n+1

+∞∑
τ=n+1

exp(−r(τ − n)∆t)(vτ − pn+1)

+ xj,n+2

+∞∑
τ=n+1

exp(−r(τ − n)∆t)(vτ − pn+2) + ...

= xj,n ∗ (
+∞∑
τ=n

exp(−r(τ − n)∆t)vτ −
pn

1− exp(−r∆t)
)

+ xj,n+1 ∗ (
+∞∑

τ=n+1

exp(−r(τ − n)∆t)vτ −
exp(−r∆t)pn

1− exp(−r∆t)
)

+ xj,n+2 ∗ (
+∞∑

τ=n+2

exp(−r(τ − n)∆t)vτ −
exp(−2r∆t)pn
1− exp(−r∆t)

) + ...

(52)

Substituting equation (52) into equation (6) and using the result in equation (48), we

have

E[
+∞∑
τ=n

(1− exp(−r∆t)) exp(−r(n′ − n)∆t)(
n′∑
τ=n

xj,τ (vn′ − pτ ))|I in−1] = (53)

E[xj,n(
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
vn +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
− pn)

+ exp(−r∆t)xj,n+1(
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
vn+1 +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
− pn+1)

+ exp(−2r∆t)xj,n+1(
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
vn+1 +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
− pn+2)

...|I in−1]

= E[
+∞∑
n′=n

exp(−r(n′ − n)∆t)(
1− exp (−r∆t)

1− exp (−r∆t)(1− κ∆t)
vn′ +

κ∆tv̄

1− exp(−r∆t)(1− κ∆t)
− pn′)|I in−1].

44



Appendix B

Proof of Lemma 2.3: We first compute each component of the covariance matrix of the

vector (vn−1, yn) conditional on the market maker’s information set Imn−1:

Cov(yn, vn−1|In−1) = Cov(
M∑
j=1

βj(vn−1 − v̂n−1), vn−1|In−1) =
M∑
j=1

βjVar(vn−1|In−1) =
M∑
j=1

βjΣv

(54)

Var(yn|Imn−1) = (
M∑
j=1

βj)
2Σv + σ2

u∆t. (55)

Then under the market maker’s belief, we have the joint distribution of (vn−1, yn)′vn−1

yn

 ∼ N(

v̂n−1

0

 , (56)

 Σv

∑M
j=1 βjΣv∑M

j=1 βjΣv (
∑M

j=1 βj)
2Σv + σ2

u∆t

).

Then applying the projection theorem, we have

λ

1− κ∆t
= ((

M∑
j=1

βj)
2Σv + σ2

u∆t)
−1

M∑
j=1

βjΣv (57)

which can be reduced to equation (14).

Applying the projection theorem again, we can derive the variance of ηn

Var(ηn) = Var(vn−1|In−1)− λ

1− κ∆t

M∑
j=1

βjΣv (58)

= Σv −
λ

1− κ∆t

M∑
j=1

βjΣv

=
Σvσ

2
u∆t

Σv(
∑M

j=1 βj)
2 + σ2

u∆t
.
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The uncertainty of market maker’s posterior belief about vn is given by

Var(vn|Imn ) = Var((1− κ∆t)ηn + εv,n) = (1− κ∆t)2Var(ηn) + σ2
v∆t. (59)

By stationary condition, we must have Var(vn|Imn ) = Σv which leads to equation (15).

Proof of Lemma 2.4: From equations (1) and (12), market maker’s estimation error

on vn is

vn − v̂n = (1− κ∆t)(vn−1 − v̂n−1)− λyn + εv,n. (60)

Substituting for vn − v̂n in equation (18), we find

Vj(vn−1, v̂n−1) = max
xj,n

(xi,n((1− κ∆t)(vn−1 − v̂n−1)− λ(xj,n +
∑
i 6=j

xi,n)) (61)

+ e−r∆t(B((1− κ∆t)(vn−1 − v̂n−1)− λ(xj,n +
∑
i 6=j

xi,n))2

+ λ2σ2
u∆t+ σ2

v∆t) + C)).

The first order condition yields

xj,n =
(1− 2e−r∆tBλ)(1− κ∆t)(vn−1 − v̂n−1) + λ(2e−r∆tBλ− 1)

∑
i 6=j xi,n

2λ(1− e−r∆tBλ)
. (62)

The second order condition requires that

e−r∆tBλ− 1 < 0. (63)

Because of symmetry argument, the only possible equilibrium is one in which their strate-

gies are identical. We should have xi,n = xj,n for i 6= j, which leads

xj,n =
(1− 2e−r∆tBλ)(1− κ∆t)

λ(M + 1− 2Me−r∆tBλ)
(vn−1 − v̂n−1) = β(vn−1 − v̂n−1) (64)
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where

β =
(1− 2e−r∆tBλ)(1− κ∆t)

λ(M + 1− 2Me−r∆tBλ)
. (65)

Substituting for xj,n back in the Bellman equation and matching the (vn−1 − v̂n−1)2 term

and constant term, we find

B = β(1− κ∆t− λMβ) + e−r∆tB(1− κ∆t− λMβ)2 (66)

which can be reduced to

B =
(1− κh)2(1− e−r∆tBλ)

λ(1 +M − 2Me−r∆tBλ)2
(67)

and

C =
e−r∆tB(λ2σ2

u + σ2
v)∆t

1− e−r∆t
. (68)

Proof of Proposition 2.1:

First, we define q = e−r∆tλB and Z = e−r∆t(1− κ∆t)2. From equation (20), we have

f(q) = 4M2q3 − 4M(M + 1)q2 + ((M + 1)2 + Z)q − Z = 0. (69)

The cubic equation f(q) has three real roots:

q1 =
M + 1

3M
(70)

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1

6M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3
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q2 =
M + 1

3M
(71)

− 1 + i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1− i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3

and

q3 =
M + 1

3M
(72)

− 1− i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 − ((M + 1)2 − 3Z)3

− 1 + i
√

3

12M

3

√
(M + 1)3 + (9− 18M)Z +

√
((M + 1)3 + (9− 18M)Z)2 + ((M + 1)2 − 3Z)3.

It can be easily verified that for M > 1, we have

f(0) = −Z < 0, f(1/2) => 0, f(1) = (M − 1)2 > 0. (73)

In addition, the quadratic function f ′(q) = 12M2q2 − 8M(M + 1)q + (M + 1)2 + Z = 0 has

two solutions,

q4,5 =
M + 1

3M
±

√
(M + 1)2 − 3Z

6M
. (74)

It can be easily verified that q4 and q5 satisfy the following conditions:

q4 ∈ (0,
1

2
) (75)

q5 ∈ (
1

2
, 1)

Equations (73) and (76) imply that 0 < q1 <
1
2

and 1
2
< q2 < q3 < 1.

From the second order condition (equation (63)) we have q < 1. In addition, from

equation (19) any root that makes economically feasible must lie in the range q ∈ (0, 1
2
).

The only possible solution is therefore q1. From equation (14) and equation (14), equation
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(19) can be rewritten as

λβ

1− κ∆t
=

ΣvMβ2

ΣvM2β2 + σ2
u∆t

=
1− 2q1

1 +M(1− 2q1)
. (76)

From equation (76), one can find that

β =

√
σ2
u(1− 2q1)∆t

ΣvM
. (77)

Substituting equation (77) into equation (15), we can find the expression for Σv

Σv =
(M(1− 2q1) + 1)σ2

v∆t

M(1− 2q1) + 1− (1− κ∆t)2
. (78)

Then from equations (14, 21 , 77) and expression for q1, we can derive the remaining

parameters β, λ, B and C, respectively with the expressions for β and λ given by:

β =
σu
σv

√
(1− 2q1)(M(1− 2q1) + 1− (1− κ∆t)2))

M(M(1− 2q1) + 1)
(79)

λ =
(1− κ∆t)σv

√
M(1− 2q1)

σu
√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

, (80)

B =
er∆tq1σu

√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

(1− κ∆t)σv
√
M(1− 2q1)

(81)

and

C =
q1σuσv∆t

1− e−r∆t
(

(1− κ∆t)
√
M(1− 2q1)√

M(1− 2q1) + 1
√

1 +M(1− 2q1)− (1− κ∆t)2
(82)

+

√
M(1− 2q1) + 1

√
1 +M(1− 2q1)− (1− κ∆t)2

(1− κ∆t)
√
M(1− 2q1)

)

Proof of Proposition 2.2: We first define

Sv = Σv/∆t, (83)
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and

q0 =
M + 1

3M
(84)

− 1

6M

3

√
(M + 1)3 − 18M − 9 +

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3

− 1

6M

3

√
(M + 1)3 − 18M − 9−

√
((M + 1)3 − 18M − 9)2 − (M2 + 2M − 2)3.

Then, as ∆t approaches 0, equations (76) and (15) become:

M2Svβ
2

M2Svβ2 + σ2
u

=
M(1− 2q0)

1 +M(1− 2q0)
(85)

Svσ
2
u

M2β2Sv + σ2
u

+ Σ2
v = Sv. (86)

The set of the above nonlinear equations has the solution

Sv =
σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(87)

and

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
. (88)

By the continuity argument, the limiting results of Σv and β become

lim
∆t→0

Σv

∆t
= Sv =

σ2
v(1 +M(1− 2q0))

M(1− 2q0)
(89)

and

lim
∆t→0

β =
σu(1− 2q0)

σv
√

1 +M(1− 2q0)
. (90)

Then, from equations (14), (76) and (21), we derive the asymptotic results for λ, B and C:

lim
∆t→0

λ =
σv
σu

√
1

1 +M(1− 2q0)
(91)
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lim
∆t→0

B =
q0σu
σv

√
1 +M(1− 2q0) (92)

lim
∆t→0

C = q0σuσv(
√

1 +M(1− 2q0) +

√
1

1 +M(1− 2q0)
). (93)

Proof of Proposition 2.3:

Over one trading period, the absolute aggregate demand of the informed traders at the

nth trading period is Mxn while the demand of the liquidity traders is un. Following Admati

and Pfleiderer (1988), define the total trading volume V oltotal = M |xn| + |un| + |yn|. The

fraction of contribution by the informed traders ξM is therefore

ξM =
M |xn|

M |xn|+ |un|+ |yn|
. (94)

Since |xn| =
√

2
π
Var(xn), |yn| =

√
2
π
Var(yn) and |un| =

√
2
π
Var(un), ξM can be written

as

ξM =
M

√
Var(xn)

M
√

Var(xn) +
√

Var(yn) +
√

Var(un)
, (95)

where

Var(xn) = β2Var(vn−1 − v̂n−1) = β2Σv (96)

= (1− 2q1)σ2
u∆t,

Var(un) = σ2
u∆t, (97)

and

Var(yn) = M2Var(xn) + Var(un) = (M2(1− 2q1) + 1)σ2
u∆t. (98)

Substituting Var(xn), Var(un) and Var(yn) into equation 95, we have

ξM =
M
√

1− 2q1

M
√

1− 2q1 + 1 +
√
M2(1− 2q1) + 1

(99)
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which depends only on the number of informed traders M and the time interval between

trading (q1 is a function of ∆t).

In the limit of continuous trading (∆t→ 0), we have lim∆t→0 q1 = q0 and therefore

lim
∆t→0

ξM =
M
√

1− 2q0

M
√

1− 2q0 + 1 +
√
M2(1− 2q0) + 1

. (100)
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